metadata
license: mit
base_model: roberta-large
datasets:
- KomeijiForce/MetaIE-Pretrain
language:
- en
metrics:
- f1
pipeline_tag: token-classification
MetaIE
This is a meta-model distilled from ChatGPT-3.5-turbo for information extraction. This is an intermediate checkpoint that can be well-transferred to all kinds of downstream information extraction tasks. This model can also be tested by different label-to-span matching as shown in the following example:
from transformers import AutoModelForTokenClassification, AutoTokenizer
import torch
device = torch.device("cuda:0")
path = f"KomeijiForce/roberta-large-metaie"
tokenizer = AutoTokenizer.from_pretrained(path)
tagger = AutoModelForTokenClassification.from_pretrained(path).to(device)
def find_sequences(lst):
sequences = []
i = 0
while i < len(lst):
if lst[i] == 0:
start = i
end = i
i += 1
while i < len(lst) and lst[i] == 1:
end = i
i += 1
sequences.append((start, end+1))
else:
i += 1
return sequences
def is_sublst(lst1, lst2):
for idx in range(len(lst1)-len(lst2)+1):
if lst1[idx:idx+len(lst2)] == lst2:
return True
return False
words = ["John", "Smith", "loves", "his", "hometown", ",", "Los", "Angeles", "."]
for prefix in ["Person", "Location", "John Smith births in", "Positive opinion"]:
sentence = " ".join([prefix, ":"]+words)
inputs = tokenizer(sentence, return_tensors="pt").to(device)
tag_predictions = tagger(**inputs).logits[0].argmax(-1)
predictions = [tokenizer.decode(inputs.input_ids[0, seq[0]:seq[1]]).strip() for seq in find_sequences(tag_predictions)]
predictions = [prediction for prediction in predictions if is_sublst(words, prediction.split())]
print(prefix, predictions)
The output will be
"Person" ['John Smith']
"Location" ['Los Angeles']
"John Smith births in" ['Los Angeles']
"Positive opinion" ['loves his hometown']