|
--- |
|
language: |
|
- "th" |
|
tags: |
|
- "thai" |
|
- "token-classification" |
|
- "pos" |
|
- "dependency-parsing" |
|
datasets: |
|
- "universal_dependencies" |
|
license: "apache-2.0" |
|
pipeline_tag: "token-classification" |
|
widget: |
|
- text: "หลายหัวดีกว่าหัวเดียว" |
|
--- |
|
|
|
# roberta-base-thai-spm-ud-goeswith |
|
|
|
## Model Description |
|
|
|
This is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [roberta-base-thai-spm-upos](https://huggingface.co/KoichiYasuoka/roberta-base-thai-spm-upos). |
|
|
|
## How to Use |
|
|
|
```py |
|
class UDgoeswith(object): |
|
def __init__(self,bert): |
|
from transformers import AutoTokenizer,AutoModelForTokenClassification |
|
self.tokenizer=AutoTokenizer.from_pretrained(bert) |
|
self.model=AutoModelForTokenClassification.from_pretrained(bert) |
|
def __call__(self,text): |
|
import numpy,torch,ufal.chu_liu_edmonds |
|
w=self.tokenizer(text,return_offsets_mapping=True) |
|
v=w["input_ids"] |
|
x=[v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)] |
|
with torch.no_grad(): |
|
e=self.model(input_ids=torch.tensor(x)).logits.numpy()[:,1:-2,:] |
|
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())] |
|
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan) |
|
g=self.model.config.label2id["X|_|goeswith"] |
|
r=numpy.tri(e.shape[0]) |
|
for i in range(e.shape[0]): |
|
for j in range(i+2,e.shape[1]): |
|
r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1 |
|
e[:,:,g]+=numpy.where(r==0,0,numpy.nan) |
|
m=numpy.full((e.shape[0]+1,e.shape[1]+1),numpy.nan) |
|
m[1:,1:]=numpy.nanmax(e,axis=2).transpose() |
|
p=numpy.zeros(m.shape) |
|
p[1:,1:]=numpy.nanargmax(e,axis=2).transpose() |
|
for i in range(1,m.shape[0]): |
|
m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i] |
|
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] |
|
if [0 for i in h if i==0]!=[0]: |
|
m[:,0]+=numpy.where(m[:,0]==numpy.nanmax(m[[i for i,j in enumerate(h) if j==0],0]),0,numpy.nan) |
|
m[[i for i,j in enumerate(h) if j==0]]+=[0 if i==0 or j==0 else numpy.nan for i,j in enumerate(h)] |
|
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] |
|
u="# text = "+text+"\n" |
|
v=[(s,e) for s,e in w["offset_mapping"] if s<e] |
|
for i,(s,e) in enumerate(v,1): |
|
q=self.model.config.id2label[p[i,h[i]]].split("|") |
|
u+="\t".join([str(i),text[s:e],"_",q[0],"_","|".join(q[1:-1]),str(h[i]),q[-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n" |
|
return u+"\n" |
|
|
|
nlp=UDgoeswith("KoichiYasuoka/roberta-base-thai-spm-ud-goeswith") |
|
print(nlp("หลายหัวดีกว่าหัวเดียว")) |
|
``` |
|
|
|
with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/). |
|
Or without ufal.chu-liu-edmonds: |
|
|
|
``` |
|
from transformers import pipeline |
|
nlp=pipeline("universal-dependencies","KoichiYasuoka/roberta-base-thai-spm-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple") |
|
print(nlp("หลายหัวดีกว่าหัวเดียว")) |
|
``` |
|
|
|
|