language: | |
- "ko" | |
tags: | |
- "korean" | |
- "token-classification" | |
- "pos" | |
- "dependency-parsing" | |
base_model: KoichiYasuoka/roberta-base-korean-hanja | |
datasets: | |
- "universal_dependencies" | |
license: "cc-by-sa-4.0" | |
pipeline_tag: "token-classification" | |
widget: | |
- text: "홍시 맛이 나서 홍시라 생각한다." | |
- text: "紅柹 맛이 나서 紅柹라 生覺한다." | |
# roberta-base-korean-ud-goeswith | |
## Model Description | |
This is a RoBERTa model pre-trained on Korean texts for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [roberta-base-korean-hanja](https://huggingface.co/KoichiYasuoka/roberta-base-korean-hanja). | |
## How to Use | |
```py | |
from transformers import pipeline | |
nlp=pipeline("universal-dependencies","KoichiYasuoka/roberta-base-korean-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple") | |
print(nlp("홍시 맛이 나서 홍시라 생각한다.")) | |
``` | |