KoichiYasuoka
commited on
Commit
•
5ecd1ce
1
Parent(s):
f8e98f4
release after the tokenizer refined
Browse files- README.md +30 -0
- config.json +374 -0
- maker.py +129 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +33 -0
- ud.py +141 -0
README.md
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "ja"
|
4 |
+
tags:
|
5 |
+
- "japanese"
|
6 |
+
- "pos"
|
7 |
+
- "dependency-parsing"
|
8 |
+
base_model: cyberagent/open-calm-small
|
9 |
+
datasets:
|
10 |
+
- "universal_dependencies"
|
11 |
+
license: "mit"
|
12 |
+
pipeline_tag: "token-classification"
|
13 |
+
widget:
|
14 |
+
- text: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている"
|
15 |
+
---
|
16 |
+
|
17 |
+
# open-calm-small-ud-causal
|
18 |
+
|
19 |
+
## Model Description
|
20 |
+
|
21 |
+
This is a GPT-2 model pretrained for POS-tagging and dependency-parsing, derived from [open-calm-small](https://huggingface.co/cyberagent/open-calm-small) refined for [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW).
|
22 |
+
|
23 |
+
## How to Use
|
24 |
+
|
25 |
+
```
|
26 |
+
from transformers import pipeline
|
27 |
+
nlp=pipeline("universal-dependencies","KoichiYasuoka/open-calm-small-ud-causal",trust_remote_code=True)
|
28 |
+
print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))
|
29 |
+
```
|
30 |
+
|
config.json
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"GPTNeoXForTokenClassification"
|
4 |
+
],
|
5 |
+
"attention_bias": true,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": 0.1,
|
9 |
+
"custom_pipelines": {
|
10 |
+
"upos": {
|
11 |
+
"impl": "ud.BellmanFordTokenClassificationPipeline",
|
12 |
+
"pt": "AutoModelForTokenClassification"
|
13 |
+
},
|
14 |
+
"universal-dependencies": {
|
15 |
+
"impl": "ud.UniversalDependenciesCausalPipeline",
|
16 |
+
"pt": "AutoModelForTokenClassification"
|
17 |
+
}
|
18 |
+
},
|
19 |
+
"eos_token_id": 0,
|
20 |
+
"hidden_act": "gelu",
|
21 |
+
"hidden_dropout": 0.0,
|
22 |
+
"hidden_size": 768,
|
23 |
+
"id2label": {
|
24 |
+
"0": "ADJ",
|
25 |
+
"1": "ADJ|l-acl",
|
26 |
+
"2": "ADJ|l-advcl",
|
27 |
+
"3": "ADJ|l-amod",
|
28 |
+
"4": "ADJ|l-ccomp",
|
29 |
+
"5": "ADJ|l-csubj",
|
30 |
+
"6": "ADJ|l-csubj:outer",
|
31 |
+
"7": "ADJ|l-nmod",
|
32 |
+
"8": "ADJ|l-nsubj",
|
33 |
+
"9": "ADJ|l-obj",
|
34 |
+
"10": "ADJ|l-obl",
|
35 |
+
"11": "ADJ|r-acl",
|
36 |
+
"12": "ADJ|r-amod",
|
37 |
+
"13": "ADJ|r-dep",
|
38 |
+
"14": "ADJ|root",
|
39 |
+
"15": "ADP",
|
40 |
+
"16": "ADP|l-case",
|
41 |
+
"17": "ADP|r-case",
|
42 |
+
"18": "ADP|r-fixed",
|
43 |
+
"19": "ADV",
|
44 |
+
"20": "ADV|l-advcl",
|
45 |
+
"21": "ADV|l-advmod",
|
46 |
+
"22": "ADV|l-obj",
|
47 |
+
"23": "ADV|r-dep",
|
48 |
+
"24": "ADV|root",
|
49 |
+
"25": "AUX",
|
50 |
+
"26": "AUX|Polarity=Neg",
|
51 |
+
"27": "AUX|Polarity=Neg|r-aux",
|
52 |
+
"28": "AUX|Polarity=Neg|r-fixed",
|
53 |
+
"29": "AUX|r-aux",
|
54 |
+
"30": "AUX|r-cop",
|
55 |
+
"31": "AUX|r-fixed",
|
56 |
+
"32": "AUX|root",
|
57 |
+
"33": "B-ADJ",
|
58 |
+
"34": "B-ADP",
|
59 |
+
"35": "B-ADV",
|
60 |
+
"36": "B-AUX",
|
61 |
+
"37": "B-AUX|Polarity=Neg",
|
62 |
+
"38": "B-CCONJ",
|
63 |
+
"39": "B-DET",
|
64 |
+
"40": "B-INTJ",
|
65 |
+
"41": "B-NOUN",
|
66 |
+
"42": "B-NOUN|Polarity=Neg",
|
67 |
+
"43": "B-NUM",
|
68 |
+
"44": "B-PART",
|
69 |
+
"45": "B-PRON",
|
70 |
+
"46": "B-PROPN",
|
71 |
+
"47": "B-PUNCT",
|
72 |
+
"48": "B-SCONJ",
|
73 |
+
"49": "B-SYM",
|
74 |
+
"50": "B-VERB",
|
75 |
+
"51": "B-X",
|
76 |
+
"52": "CCONJ",
|
77 |
+
"53": "CCONJ|l-cc",
|
78 |
+
"54": "CCONJ|r-cc",
|
79 |
+
"55": "DET",
|
80 |
+
"56": "DET|l-det",
|
81 |
+
"57": "I-ADJ",
|
82 |
+
"58": "I-ADP",
|
83 |
+
"59": "I-ADV",
|
84 |
+
"60": "I-AUX",
|
85 |
+
"61": "I-AUX|Polarity=Neg",
|
86 |
+
"62": "I-CCONJ",
|
87 |
+
"63": "I-DET",
|
88 |
+
"64": "I-INTJ",
|
89 |
+
"65": "I-NOUN",
|
90 |
+
"66": "I-NOUN|Polarity=Neg",
|
91 |
+
"67": "I-NUM",
|
92 |
+
"68": "I-PART",
|
93 |
+
"69": "I-PRON",
|
94 |
+
"70": "I-PROPN",
|
95 |
+
"71": "I-PUNCT",
|
96 |
+
"72": "I-SCONJ",
|
97 |
+
"73": "I-SYM",
|
98 |
+
"74": "I-VERB",
|
99 |
+
"75": "I-X",
|
100 |
+
"76": "INTJ",
|
101 |
+
"77": "INTJ|l-discourse",
|
102 |
+
"78": "INTJ|r-discourse",
|
103 |
+
"79": "INTJ|root",
|
104 |
+
"80": "NOUN",
|
105 |
+
"81": "NOUN|Polarity=Neg",
|
106 |
+
"82": "NOUN|Polarity=Neg|l-obl",
|
107 |
+
"83": "NOUN|Polarity=Neg|root",
|
108 |
+
"84": "NOUN|l-acl",
|
109 |
+
"85": "NOUN|l-advcl",
|
110 |
+
"86": "NOUN|l-ccomp",
|
111 |
+
"87": "NOUN|l-compound",
|
112 |
+
"88": "NOUN|l-csubj",
|
113 |
+
"89": "NOUN|l-csubj:outer",
|
114 |
+
"90": "NOUN|l-nmod",
|
115 |
+
"91": "NOUN|l-nsubj",
|
116 |
+
"92": "NOUN|l-nsubj:outer",
|
117 |
+
"93": "NOUN|l-obj",
|
118 |
+
"94": "NOUN|l-obl",
|
119 |
+
"95": "NOUN|r-compound",
|
120 |
+
"96": "NOUN|r-nmod",
|
121 |
+
"97": "NOUN|r-nsubj",
|
122 |
+
"98": "NOUN|root",
|
123 |
+
"99": "NUM",
|
124 |
+
"100": "NUM|l-advcl",
|
125 |
+
"101": "NUM|l-compound",
|
126 |
+
"102": "NUM|l-nmod",
|
127 |
+
"103": "NUM|l-nsubj",
|
128 |
+
"104": "NUM|l-nsubj:outer",
|
129 |
+
"105": "NUM|l-nummod",
|
130 |
+
"106": "NUM|l-obj",
|
131 |
+
"107": "NUM|l-obl",
|
132 |
+
"108": "NUM|r-compound",
|
133 |
+
"109": "NUM|root",
|
134 |
+
"110": "PART",
|
135 |
+
"111": "PART|l-mark",
|
136 |
+
"112": "PART|r-mark",
|
137 |
+
"113": "PRON",
|
138 |
+
"114": "PRON|l-acl",
|
139 |
+
"115": "PRON|l-advcl",
|
140 |
+
"116": "PRON|l-nmod",
|
141 |
+
"117": "PRON|l-nsubj",
|
142 |
+
"118": "PRON|l-nsubj:outer",
|
143 |
+
"119": "PRON|l-obj",
|
144 |
+
"120": "PRON|l-obl",
|
145 |
+
"121": "PRON|root",
|
146 |
+
"122": "PROPN",
|
147 |
+
"123": "PROPN|l-acl",
|
148 |
+
"124": "PROPN|l-advcl",
|
149 |
+
"125": "PROPN|l-compound",
|
150 |
+
"126": "PROPN|l-nmod",
|
151 |
+
"127": "PROPN|l-nsubj",
|
152 |
+
"128": "PROPN|l-nsubj:outer",
|
153 |
+
"129": "PROPN|l-obj",
|
154 |
+
"130": "PROPN|l-obl",
|
155 |
+
"131": "PROPN|r-compound",
|
156 |
+
"132": "PROPN|r-nmod",
|
157 |
+
"133": "PROPN|root",
|
158 |
+
"134": "PUNCT",
|
159 |
+
"135": "PUNCT|l-punct",
|
160 |
+
"136": "PUNCT|r-punct",
|
161 |
+
"137": "SCONJ",
|
162 |
+
"138": "SCONJ|l-dep",
|
163 |
+
"139": "SCONJ|r-fixed",
|
164 |
+
"140": "SCONJ|r-mark",
|
165 |
+
"141": "SYM",
|
166 |
+
"142": "SYM|l-compound",
|
167 |
+
"143": "SYM|l-dep",
|
168 |
+
"144": "SYM|l-nmod",
|
169 |
+
"145": "SYM|l-obl",
|
170 |
+
"146": "SYM|r-compound",
|
171 |
+
"147": "SYM|r-dep",
|
172 |
+
"148": "VERB",
|
173 |
+
"149": "VERB|l-acl",
|
174 |
+
"150": "VERB|l-advcl",
|
175 |
+
"151": "VERB|l-ccomp",
|
176 |
+
"152": "VERB|l-compound",
|
177 |
+
"153": "VERB|l-csubj",
|
178 |
+
"154": "VERB|l-csubj:outer",
|
179 |
+
"155": "VERB|l-nmod",
|
180 |
+
"156": "VERB|l-obj",
|
181 |
+
"157": "VERB|l-obl",
|
182 |
+
"158": "VERB|r-acl",
|
183 |
+
"159": "VERB|r-advcl",
|
184 |
+
"160": "VERB|r-compound",
|
185 |
+
"161": "VERB|root",
|
186 |
+
"162": "X",
|
187 |
+
"163": "X|l-nmod",
|
188 |
+
"164": "X|r-dep"
|
189 |
+
},
|
190 |
+
"initializer_range": 0.02,
|
191 |
+
"intermediate_size": 3072,
|
192 |
+
"label2id": {
|
193 |
+
"ADJ": 0,
|
194 |
+
"ADJ|l-acl": 1,
|
195 |
+
"ADJ|l-advcl": 2,
|
196 |
+
"ADJ|l-amod": 3,
|
197 |
+
"ADJ|l-ccomp": 4,
|
198 |
+
"ADJ|l-csubj": 5,
|
199 |
+
"ADJ|l-csubj:outer": 6,
|
200 |
+
"ADJ|l-nmod": 7,
|
201 |
+
"ADJ|l-nsubj": 8,
|
202 |
+
"ADJ|l-obj": 9,
|
203 |
+
"ADJ|l-obl": 10,
|
204 |
+
"ADJ|r-acl": 11,
|
205 |
+
"ADJ|r-amod": 12,
|
206 |
+
"ADJ|r-dep": 13,
|
207 |
+
"ADJ|root": 14,
|
208 |
+
"ADP": 15,
|
209 |
+
"ADP|l-case": 16,
|
210 |
+
"ADP|r-case": 17,
|
211 |
+
"ADP|r-fixed": 18,
|
212 |
+
"ADV": 19,
|
213 |
+
"ADV|l-advcl": 20,
|
214 |
+
"ADV|l-advmod": 21,
|
215 |
+
"ADV|l-obj": 22,
|
216 |
+
"ADV|r-dep": 23,
|
217 |
+
"ADV|root": 24,
|
218 |
+
"AUX": 25,
|
219 |
+
"AUX|Polarity=Neg": 26,
|
220 |
+
"AUX|Polarity=Neg|r-aux": 27,
|
221 |
+
"AUX|Polarity=Neg|r-fixed": 28,
|
222 |
+
"AUX|r-aux": 29,
|
223 |
+
"AUX|r-cop": 30,
|
224 |
+
"AUX|r-fixed": 31,
|
225 |
+
"AUX|root": 32,
|
226 |
+
"B-ADJ": 33,
|
227 |
+
"B-ADP": 34,
|
228 |
+
"B-ADV": 35,
|
229 |
+
"B-AUX": 36,
|
230 |
+
"B-AUX|Polarity=Neg": 37,
|
231 |
+
"B-CCONJ": 38,
|
232 |
+
"B-DET": 39,
|
233 |
+
"B-INTJ": 40,
|
234 |
+
"B-NOUN": 41,
|
235 |
+
"B-NOUN|Polarity=Neg": 42,
|
236 |
+
"B-NUM": 43,
|
237 |
+
"B-PART": 44,
|
238 |
+
"B-PRON": 45,
|
239 |
+
"B-PROPN": 46,
|
240 |
+
"B-PUNCT": 47,
|
241 |
+
"B-SCONJ": 48,
|
242 |
+
"B-SYM": 49,
|
243 |
+
"B-VERB": 50,
|
244 |
+
"B-X": 51,
|
245 |
+
"CCONJ": 52,
|
246 |
+
"CCONJ|l-cc": 53,
|
247 |
+
"CCONJ|r-cc": 54,
|
248 |
+
"DET": 55,
|
249 |
+
"DET|l-det": 56,
|
250 |
+
"I-ADJ": 57,
|
251 |
+
"I-ADP": 58,
|
252 |
+
"I-ADV": 59,
|
253 |
+
"I-AUX": 60,
|
254 |
+
"I-AUX|Polarity=Neg": 61,
|
255 |
+
"I-CCONJ": 62,
|
256 |
+
"I-DET": 63,
|
257 |
+
"I-INTJ": 64,
|
258 |
+
"I-NOUN": 65,
|
259 |
+
"I-NOUN|Polarity=Neg": 66,
|
260 |
+
"I-NUM": 67,
|
261 |
+
"I-PART": 68,
|
262 |
+
"I-PRON": 69,
|
263 |
+
"I-PROPN": 70,
|
264 |
+
"I-PUNCT": 71,
|
265 |
+
"I-SCONJ": 72,
|
266 |
+
"I-SYM": 73,
|
267 |
+
"I-VERB": 74,
|
268 |
+
"I-X": 75,
|
269 |
+
"INTJ": 76,
|
270 |
+
"INTJ|l-discourse": 77,
|
271 |
+
"INTJ|r-discourse": 78,
|
272 |
+
"INTJ|root": 79,
|
273 |
+
"NOUN": 80,
|
274 |
+
"NOUN|Polarity=Neg": 81,
|
275 |
+
"NOUN|Polarity=Neg|l-obl": 82,
|
276 |
+
"NOUN|Polarity=Neg|root": 83,
|
277 |
+
"NOUN|l-acl": 84,
|
278 |
+
"NOUN|l-advcl": 85,
|
279 |
+
"NOUN|l-ccomp": 86,
|
280 |
+
"NOUN|l-compound": 87,
|
281 |
+
"NOUN|l-csubj": 88,
|
282 |
+
"NOUN|l-csubj:outer": 89,
|
283 |
+
"NOUN|l-nmod": 90,
|
284 |
+
"NOUN|l-nsubj": 91,
|
285 |
+
"NOUN|l-nsubj:outer": 92,
|
286 |
+
"NOUN|l-obj": 93,
|
287 |
+
"NOUN|l-obl": 94,
|
288 |
+
"NOUN|r-compound": 95,
|
289 |
+
"NOUN|r-nmod": 96,
|
290 |
+
"NOUN|r-nsubj": 97,
|
291 |
+
"NOUN|root": 98,
|
292 |
+
"NUM": 99,
|
293 |
+
"NUM|l-advcl": 100,
|
294 |
+
"NUM|l-compound": 101,
|
295 |
+
"NUM|l-nmod": 102,
|
296 |
+
"NUM|l-nsubj": 103,
|
297 |
+
"NUM|l-nsubj:outer": 104,
|
298 |
+
"NUM|l-nummod": 105,
|
299 |
+
"NUM|l-obj": 106,
|
300 |
+
"NUM|l-obl": 107,
|
301 |
+
"NUM|r-compound": 108,
|
302 |
+
"NUM|root": 109,
|
303 |
+
"PART": 110,
|
304 |
+
"PART|l-mark": 111,
|
305 |
+
"PART|r-mark": 112,
|
306 |
+
"PRON": 113,
|
307 |
+
"PRON|l-acl": 114,
|
308 |
+
"PRON|l-advcl": 115,
|
309 |
+
"PRON|l-nmod": 116,
|
310 |
+
"PRON|l-nsubj": 117,
|
311 |
+
"PRON|l-nsubj:outer": 118,
|
312 |
+
"PRON|l-obj": 119,
|
313 |
+
"PRON|l-obl": 120,
|
314 |
+
"PRON|root": 121,
|
315 |
+
"PROPN": 122,
|
316 |
+
"PROPN|l-acl": 123,
|
317 |
+
"PROPN|l-advcl": 124,
|
318 |
+
"PROPN|l-compound": 125,
|
319 |
+
"PROPN|l-nmod": 126,
|
320 |
+
"PROPN|l-nsubj": 127,
|
321 |
+
"PROPN|l-nsubj:outer": 128,
|
322 |
+
"PROPN|l-obj": 129,
|
323 |
+
"PROPN|l-obl": 130,
|
324 |
+
"PROPN|r-compound": 131,
|
325 |
+
"PROPN|r-nmod": 132,
|
326 |
+
"PROPN|root": 133,
|
327 |
+
"PUNCT": 134,
|
328 |
+
"PUNCT|l-punct": 135,
|
329 |
+
"PUNCT|r-punct": 136,
|
330 |
+
"SCONJ": 137,
|
331 |
+
"SCONJ|l-dep": 138,
|
332 |
+
"SCONJ|r-fixed": 139,
|
333 |
+
"SCONJ|r-mark": 140,
|
334 |
+
"SYM": 141,
|
335 |
+
"SYM|l-compound": 142,
|
336 |
+
"SYM|l-dep": 143,
|
337 |
+
"SYM|l-nmod": 144,
|
338 |
+
"SYM|l-obl": 145,
|
339 |
+
"SYM|r-compound": 146,
|
340 |
+
"SYM|r-dep": 147,
|
341 |
+
"VERB": 148,
|
342 |
+
"VERB|l-acl": 149,
|
343 |
+
"VERB|l-advcl": 150,
|
344 |
+
"VERB|l-ccomp": 151,
|
345 |
+
"VERB|l-compound": 152,
|
346 |
+
"VERB|l-csubj": 153,
|
347 |
+
"VERB|l-csubj:outer": 154,
|
348 |
+
"VERB|l-nmod": 155,
|
349 |
+
"VERB|l-obj": 156,
|
350 |
+
"VERB|l-obl": 157,
|
351 |
+
"VERB|r-acl": 158,
|
352 |
+
"VERB|r-advcl": 159,
|
353 |
+
"VERB|r-compound": 160,
|
354 |
+
"VERB|root": 161,
|
355 |
+
"X": 162,
|
356 |
+
"X|l-nmod": 163,
|
357 |
+
"X|r-dep": 164
|
358 |
+
},
|
359 |
+
"layer_norm_eps": 1e-05,
|
360 |
+
"max_position_embeddings": 2048,
|
361 |
+
"model_type": "gpt_neox",
|
362 |
+
"num_attention_heads": 12,
|
363 |
+
"num_hidden_layers": 12,
|
364 |
+
"rope_scaling": null,
|
365 |
+
"rotary_emb_base": 10000,
|
366 |
+
"rotary_pct": 1.0,
|
367 |
+
"tie_word_embeddings": false,
|
368 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
369 |
+
"torch_dtype": "float32",
|
370 |
+
"transformers_version": "4.44.0",
|
371 |
+
"use_cache": true,
|
372 |
+
"use_parallel_residual": false,
|
373 |
+
"vocab_size": 52096
|
374 |
+
}
|
maker.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python3
|
2 |
+
src="cyberagent/open-calm-small"
|
3 |
+
tgt="KoichiYasuoka/open-calm-small-ud-causal"
|
4 |
+
url="https://github.com/UniversalDependencies/UD_Japanese-GSDLUW"
|
5 |
+
|
6 |
+
import os,json,unicodedata
|
7 |
+
from transformers import AutoTokenizer,PreTrainedTokenizerFast,AutoConfig,GPTNeoXForTokenClassification,DefaultDataCollator,TrainingArguments,Trainer
|
8 |
+
d=os.path.basename(url)
|
9 |
+
os.system("test -d "+d+" || git clone --depth=1 "+url)
|
10 |
+
os.system("for F in train dev test ; do cp "+d+"/*-$F.conllu $F.conllu ; done")
|
11 |
+
tkz=AutoTokenizer.from_pretrained(src,cls_token="<|endoftext|>",sep_token="<|endoftext|>",mask_token="<|endoftext|>",model_max_length=2048)
|
12 |
+
tkz.save_pretrained("tmpdir")
|
13 |
+
d=json.loads(tkz.backend_tokenizer.to_str())
|
14 |
+
form=set()
|
15 |
+
with open("train.conllu","r",encoding="utf-8") as r:
|
16 |
+
for s in r:
|
17 |
+
w=s.split("\t")
|
18 |
+
if len(w)==10 and w[0].isdecimal():
|
19 |
+
form.add(w[1])
|
20 |
+
m=[t for t in d["model"]["merges"] if len(t)<5]
|
21 |
+
for i in range(len(tkz)):
|
22 |
+
w=tkz.decode(i)
|
23 |
+
if len(w)==2 and w in form and not unicodedata.name(w[0]).startswith("HIRAGANA"):
|
24 |
+
k=tkz([w[0],w[1]],add_special_tokens=False)["input_ids"]
|
25 |
+
if len(k[0])==1 and len(k[1])==1:
|
26 |
+
m.append(" ".join(tkz.convert_ids_to_tokens([k[0][0],k[1][0]])))
|
27 |
+
d["model"]["merges"]=m
|
28 |
+
tkz.backend_tokenizer.from_str(json.dumps(d)).save("tmpdir/tokenizer.json")
|
29 |
+
tkz=PreTrainedTokenizerFast.from_pretrained("tmpdir")
|
30 |
+
|
31 |
+
class UDCausalDataset(object):
|
32 |
+
def __init__(self,conllu,tokenizer,embeddings=None):
|
33 |
+
self.conllu=open(conllu,"r",encoding="utf-8")
|
34 |
+
self.tokenizer=tokenizer
|
35 |
+
self.embeddings=embeddings
|
36 |
+
self.max_tokens=3
|
37 |
+
self.seeks=[(0,0)]
|
38 |
+
label=set(["SYM"])
|
39 |
+
dep=set()
|
40 |
+
s=self.conllu.readline()
|
41 |
+
while s!="":
|
42 |
+
if s=="\n":
|
43 |
+
self.seeks.append((self.conllu.tell(),0))
|
44 |
+
else:
|
45 |
+
w=s.split("\t")
|
46 |
+
if len(w)==10:
|
47 |
+
if w[0].isdecimal():
|
48 |
+
p=w[3] if w[5]=="_" else w[3]+"|"+w[5]
|
49 |
+
label.add(p)
|
50 |
+
dep.add(p+("|" if w[6]=="0" else "|l-" if int(w[0])<int(w[6]) else "|r-")+w[7])
|
51 |
+
self.seeks.append((self.seeks[-1][0],int(w[0])))
|
52 |
+
self.max_tokens=max(self.max_tokens,int(w[0])*2+1)
|
53 |
+
s=self.conllu.readline()
|
54 |
+
lid={}
|
55 |
+
for i,l in enumerate(sorted(label)):
|
56 |
+
lid[l],lid["B-"+l],lid["I-"+l]=i*3,i*3+1,i*3+2
|
57 |
+
for i,d in enumerate(sorted(dep),len(lid)):
|
58 |
+
lid[d]=i
|
59 |
+
self.label2id=lid
|
60 |
+
def __call__(*args):
|
61 |
+
lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))}
|
62 |
+
for t in args:
|
63 |
+
t.label2id=lid
|
64 |
+
return lid
|
65 |
+
def __del__(self):
|
66 |
+
self.conllu.close()
|
67 |
+
__len__=lambda self:len(self.seeks)-1
|
68 |
+
def __getitem__(self,i):
|
69 |
+
s,t=self.seeks[i]
|
70 |
+
self.conllu.seek(s)
|
71 |
+
form,upos,deps,w=[],[],[],[""]
|
72 |
+
while w[0]!="\n":
|
73 |
+
w=self.conllu.readline().split("\t")
|
74 |
+
if len(w)==10:
|
75 |
+
form.append(w[1])
|
76 |
+
if w[0].isdecimal():
|
77 |
+
upos.append(w[3] if w[5]=="_" else w[3]+"|"+w[5])
|
78 |
+
deps.append((int(w[6]),w[7]))
|
79 |
+
v=self.tokenizer(form,add_special_tokens=False)
|
80 |
+
if t==0:
|
81 |
+
i,u=[],[]
|
82 |
+
for j,(x,y) in enumerate(zip(v["input_ids"],upos)):
|
83 |
+
if x!=[]:
|
84 |
+
i+=x
|
85 |
+
u+=[y] if len(x)==1 else ["B-"+y]+["I-"+y]*(len(x)-1)
|
86 |
+
emb=self.embeddings
|
87 |
+
pad=self.tokenizer.pad_token_id
|
88 |
+
else:
|
89 |
+
import torch
|
90 |
+
m=[]
|
91 |
+
for x in v["input_ids"]:
|
92 |
+
if x==[]:
|
93 |
+
m.append(self.embeddings[self.tokenizer.unk_token_id,:])
|
94 |
+
else:
|
95 |
+
m.append(self.embeddings[x,:].sum(axis=0))
|
96 |
+
m.append(self.embeddings[self.tokenizer.sep_token_id,:])
|
97 |
+
m.append(self.embeddings[self.tokenizer.pad_token_id,:])
|
98 |
+
emb=torch.stack(m)
|
99 |
+
i,u=list(range(len(upos)+1)),upos+["SYM"]
|
100 |
+
i.append(t-1)
|
101 |
+
k,d=deps[t-1]
|
102 |
+
u.append(upos[t-1]+"|"+d if k==0 else upos[t-1])
|
103 |
+
for j in range(t,len(upos)):
|
104 |
+
i.append(j)
|
105 |
+
a,b=deps[j]
|
106 |
+
u.append(upos[j]+"|r-"+b if a==t else upos[t-1]+"|l-"+d if j+1==k else upos[j])
|
107 |
+
pad=-1
|
108 |
+
j=self.max_tokens-len(i)
|
109 |
+
if j>0:
|
110 |
+
ids=i+[pad]*j
|
111 |
+
upos=u+["SYM"]*j
|
112 |
+
else:
|
113 |
+
ids=i[0:self.max_tokens]
|
114 |
+
upos=u[0:self.max_tokens]
|
115 |
+
return {"inputs_embeds":emb[ids,:],"labels":[self.label2id[p] for p in upos]}
|
116 |
+
|
117 |
+
trainDS=UDCausalDataset("train.conllu",tkz)
|
118 |
+
devDS=UDCausalDataset("dev.conllu",tkz)
|
119 |
+
testDS=UDCausalDataset("test.conllu",tkz)
|
120 |
+
lid=trainDS(devDS,testDS)
|
121 |
+
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True)
|
122 |
+
mdl=GPTNeoXForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True)
|
123 |
+
trainDS.embeddings=mdl.get_input_embeddings().weight
|
124 |
+
trainDS.max_tokens=min(trainDS.max_tokens,cfg.max_position_embeddings)
|
125 |
+
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=24,dataloader_pin_memory=False,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False)
|
126 |
+
trn=Trainer(args=arg,data_collator=DefaultDataCollator(),model=mdl,train_dataset=trainDS)
|
127 |
+
trn.train()
|
128 |
+
trn.save_model(tgt)
|
129 |
+
tkz.save_pretrained(tgt)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e049ff22a39402008cc719c2efbd2977bd70c31d05cdfd6818577e5875f74192
|
3 |
+
size 500820958
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<|padding|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "<|endoftext|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<|endoftext|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<|padding|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
}
|
22 |
+
},
|
23 |
+
"bos_token": "<|endoftext|>",
|
24 |
+
"clean_up_tokenization_spaces": true,
|
25 |
+
"cls_token": "<|endoftext|>",
|
26 |
+
"eos_token": "<|endoftext|>",
|
27 |
+
"mask_token": "<|endoftext|>",
|
28 |
+
"model_max_length": 2048,
|
29 |
+
"pad_token": "<|padding|>",
|
30 |
+
"sep_token": "<|endoftext|>",
|
31 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
32 |
+
"unk_token": "<|endoftext|>"
|
33 |
+
}
|
ud.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy
|
2 |
+
from transformers import TokenClassificationPipeline
|
3 |
+
|
4 |
+
class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
|
5 |
+
def __init__(self,**kwargs):
|
6 |
+
super().__init__(**kwargs)
|
7 |
+
x=self.model.config.label2id
|
8 |
+
y=[k for k in x if k.startswith("B-") or not (k.startswith("I-") or k.endswith("|root") or k.find("|l-")>0 or k.find("|r-")>0)]
|
9 |
+
self.transition=numpy.full((len(x),len(x)),numpy.nan)
|
10 |
+
for k,v in x.items():
|
11 |
+
for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
|
12 |
+
self.transition[v,x[j]]=0
|
13 |
+
def check_model_type(self,supported_models):
|
14 |
+
pass
|
15 |
+
def postprocess(self,model_outputs,**kwargs):
|
16 |
+
if "logits" not in model_outputs:
|
17 |
+
return self.postprocess(model_outputs[0],**kwargs)
|
18 |
+
m=model_outputs["logits"][0].numpy()
|
19 |
+
e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
|
20 |
+
z=e/e.sum(axis=-1,keepdims=True)
|
21 |
+
for i in range(m.shape[0]-1,0,-1):
|
22 |
+
m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
|
23 |
+
k=[numpy.nanargmax(m[0]+self.transition[0])]
|
24 |
+
for i in range(1,m.shape[0]):
|
25 |
+
k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
|
26 |
+
w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
|
27 |
+
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
|
28 |
+
for i,t in reversed(list(enumerate(w))):
|
29 |
+
p=t.pop("entity")
|
30 |
+
if p.startswith("I-"):
|
31 |
+
w[i-1]["score"]=min(w[i-1]["score"],t["score"])
|
32 |
+
w[i-1]["end"]=w.pop(i)["end"]
|
33 |
+
elif p.startswith("B-"):
|
34 |
+
t["entity_group"]=p[2:]
|
35 |
+
else:
|
36 |
+
t["entity_group"]=p
|
37 |
+
for t in w:
|
38 |
+
t["text"]=model_outputs["sentence"][t["start"]:t["end"]]
|
39 |
+
return w
|
40 |
+
|
41 |
+
class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline):
|
42 |
+
def __init__(self,**kwargs):
|
43 |
+
kwargs["aggregation_strategy"]="simple"
|
44 |
+
super().__init__(**kwargs)
|
45 |
+
x=self.model.config.label2id
|
46 |
+
self.root=numpy.full((len(x)),numpy.nan)
|
47 |
+
self.left_arc=numpy.full((len(x)),numpy.nan)
|
48 |
+
self.right_arc=numpy.full((len(x)),numpy.nan)
|
49 |
+
for k,v in x.items():
|
50 |
+
if k.endswith("|root"):
|
51 |
+
self.root[v]=0
|
52 |
+
elif k.find("|l-")>0:
|
53 |
+
self.left_arc[v]=0
|
54 |
+
elif k.find("|r-")>0:
|
55 |
+
self.right_arc[v]=0
|
56 |
+
def postprocess(self,model_outputs,**kwargs):
|
57 |
+
import torch
|
58 |
+
if "logits" not in model_outputs:
|
59 |
+
return self.postprocess(model_outputs[0],**kwargs)
|
60 |
+
m=model_outputs["logits"][0].numpy()
|
61 |
+
for i in range(m.shape[0]-1,0,-1):
|
62 |
+
m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
|
63 |
+
k=[numpy.nanargmax(m[0]+self.transition[0])]
|
64 |
+
for i in range(1,m.shape[0]):
|
65 |
+
k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
|
66 |
+
w=[{"entity":self.model.config.id2label[j],"start":s,"end":e} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
|
67 |
+
for i,t in reversed(list(enumerate(w))):
|
68 |
+
p=t.pop("entity")
|
69 |
+
if p.startswith("I-"):
|
70 |
+
w[i-1]["end"]=max(w.pop(i)["end"],w[i-1]["end"])
|
71 |
+
elif i>0 and w[i-1]["end"]>w[i]["start"]:
|
72 |
+
w[i-1]["end"]=max(w.pop(i)["end"],w[i-1]["end"])
|
73 |
+
elif p.startswith("B-"):
|
74 |
+
t["entity_group"]=p[2:]
|
75 |
+
else:
|
76 |
+
t["entity_group"]=p
|
77 |
+
d=[model_outputs["sentence"][t["start"]:t["end"]] for t in w]
|
78 |
+
for i in range(len(d)-1,-1,-1):
|
79 |
+
if d[i].startswith(" "):
|
80 |
+
j=len(d[i])-len(d[i].lstrip())
|
81 |
+
d[i]=d[i].lstrip()
|
82 |
+
w[i]["start"]+=j
|
83 |
+
if d[i].endswith(" "):
|
84 |
+
j=len(d[i])-len(d[i].rstrip())
|
85 |
+
d[i]=d[i].rstrip()
|
86 |
+
w[i]["end"]-=j
|
87 |
+
if d[i].strip()=="":
|
88 |
+
d.pop(i)
|
89 |
+
w.pop(i)
|
90 |
+
v=self.tokenizer(d,add_special_tokens=False)
|
91 |
+
e=self.model.get_input_embeddings().weight
|
92 |
+
m=[]
|
93 |
+
for x in v["input_ids"]:
|
94 |
+
if x==[]:
|
95 |
+
x=[self.tokenizer.unk_token_id]
|
96 |
+
m.append(e[x,:].sum(axis=0))
|
97 |
+
m.append(e[self.tokenizer.sep_token_id,:])
|
98 |
+
m.append(e[self.tokenizer.pad_token_id,:])
|
99 |
+
m=torch.stack(m).to(self.device)
|
100 |
+
k=list(range(len(d)+1))
|
101 |
+
e=[]
|
102 |
+
with torch.no_grad():
|
103 |
+
for i in range(len(d)):
|
104 |
+
e.append(self.model(inputs_embeds=torch.unsqueeze(m[k+list(range(i,len(d)))+[-1]*i,:],0)).logits[0,-len(d):,:])
|
105 |
+
e=torch.stack(e).cpu().numpy()
|
106 |
+
for i in range(len(d)):
|
107 |
+
for j in range(i):
|
108 |
+
e[-j-1,-i-1],e[-i-1,-j-1]=e[-i-1,i-j]+self.left_arc,e[-i-1,i-j]+self.right_arc
|
109 |
+
e[-i-1,-i-1]=e[-i-1,0]+self.root
|
110 |
+
m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
|
111 |
+
h=self.chu_liu_edmonds(m)
|
112 |
+
z=[i for i,j in enumerate(h) if i==j]
|
113 |
+
if len(z)>1:
|
114 |
+
k,h=z[numpy.nanargmax(m[z,z])],numpy.nanmin(m)-numpy.nanmax(m)
|
115 |
+
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
|
116 |
+
h=self.chu_liu_edmonds(m)
|
117 |
+
q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
|
118 |
+
t=model_outputs["sentence"].replace("\n"," ")
|
119 |
+
u="# text = "+t+"\n"
|
120 |
+
for i,j in enumerate(d):
|
121 |
+
u+="\t".join([str(i+1),j,"_",q[i][0],"_","_" if len(q[i])<3 else "|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),"root" if q[i][-1]=="root" else q[i][-1][2:],"_","_" if i+1<len(d) and w[i]["end"]<w[i+1]["start"] else "SpaceAfter=No"])+"\n"
|
122 |
+
return u+"\n"
|
123 |
+
def chu_liu_edmonds(self,matrix):
|
124 |
+
h=numpy.nanargmax(matrix,axis=0)
|
125 |
+
x=[-1 if i==j else j for i,j in enumerate(h)]
|
126 |
+
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
|
127 |
+
y=[]
|
128 |
+
while x!=y:
|
129 |
+
y=list(x)
|
130 |
+
for i,j in enumerate(x):
|
131 |
+
x[i]=b(x,i,j)
|
132 |
+
if max(x)<0:
|
133 |
+
return h
|
134 |
+
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
|
135 |
+
z=matrix-numpy.nanmax(matrix,axis=0)
|
136 |
+
m=numpy.block([[z[x,:][:,x],numpy.nanmax(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.nanmax(z[y,:][:,x],axis=0),numpy.nanmax(z[y,y])]])
|
137 |
+
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.nanargmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
|
138 |
+
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
|
139 |
+
i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
|
140 |
+
h[i]=x[k[-1]] if k[-1]<len(x) else i
|
141 |
+
return h
|