metadata
language:
- ain
tags:
- ainu
- token-classification
- pos
- dependency-parsing
license: cc-by-sa-4.0
pipeline_tag: token-classification
widget:
- text: itak=as awa pon rupne aynu ene itaki
- text: イタカㇱ アワ ポン ルㇷ゚ネ アイヌ エネ イタキ
deberta-base-ainu-ud-goeswith
Model Description
This is a DeBERTa(V2) model pre-trained on Ainu texts (both カタカナ and romanized) for POS-tagging and dependency-parsing (using goeswith
for subwords), derived from deberta-base-ainu-upos.
How to Use
class UDgoeswith(object):
def __init__(self,bert):
from transformers import AutoTokenizer,AutoModelForTokenClassification
self.tokenizer=AutoTokenizer.from_pretrained(bert)
self.model=AutoModelForTokenClassification.from_pretrained(bert)
def __call__(self,text):
import numpy,torch,ufal.chu_liu_edmonds
w=self.tokenizer(text,return_offsets_mapping=True)
v=w["input_ids"]
x=[v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)]
with torch.no_grad():
e=self.model(input_ids=torch.tensor(x)).logits.numpy()[:,1:-2,:]
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan)
g=self.model.config.label2id["X|_|goeswith"]
r=numpy.tri(e.shape[0])
for i in range(e.shape[0]):
for j in range(i+2,e.shape[1]):
r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1
e[:,:,g]+=numpy.where(r==0,0,numpy.nan)
m=numpy.full((e.shape[0]+1,e.shape[1]+1),numpy.nan)
m[1:,1:]=numpy.nanmax(e,axis=2).transpose()
p=numpy.zeros(m.shape)
p[1:,1:]=numpy.nanargmax(e,axis=2).transpose()
for i in range(1,m.shape[0]):
m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i]
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
if [0 for i in h if i==0]!=[0]:
m[:,0]+=numpy.where(m[:,0]==numpy.nanmax(m[[i for i,j in enumerate(h) if j==0],0]),0,numpy.nan)
m[[i for i,j in enumerate(h) if j==0]]+=[0 if i==0 or j==0 else numpy.nan for i,j in enumerate(h)]
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
u="# text = "+text+"\n"
v=[(s,e) for s,e in w["offset_mapping"] if s<e]
for i,(s,e) in enumerate(v,1):
q=self.model.config.id2label[p[i,h[i]]].split("|")
u+="\t".join([str(i),text[s:e],"_",q[0],"|".join(q[1:-1]),"_",str(h[i]),q[-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n"
return u+"\n"
nlp=UDgoeswith("KoichiYasuoka/deberta-base-ainu-ud-goeswith")
print(nlp("itak=as awa pon rupne aynu ene itaki"))
with ufal.chu-liu-edmonds. Or without ufal.chu-liu-edmonds:
from transformers import pipeline
nlp=pipeline("universal-dependencies","KoichiYasuoka/deberta-base-ainu-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
print(nlp("itak=as awa pon rupne aynu ene itaki"))