Commit
·
31088a4
1
Parent(s):
3be54c8
initial release
Browse files- README.md +30 -0
- added_tokens.json +5 -0
- config.json +500 -0
- maker.py +101 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +20 -0
- tokenizer_config.json +44 -0
- ud.py +159 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "ja"
|
4 |
+
tags:
|
5 |
+
- "japanese"
|
6 |
+
- "pos"
|
7 |
+
- "dependency-parsing"
|
8 |
+
base_model: Kendamarron/Tokara-0.5B-v0.1
|
9 |
+
datasets:
|
10 |
+
- "universal_dependencies"
|
11 |
+
license: "apache-2.0"
|
12 |
+
pipeline_tag: "token-classification"
|
13 |
+
widget:
|
14 |
+
- text: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている"
|
15 |
+
---
|
16 |
+
|
17 |
+
# Tokara-0.5B-ud-embeds
|
18 |
+
|
19 |
+
## Model Description
|
20 |
+
|
21 |
+
This is a Qwen1.5 model pretrained for POS-tagging and dependency-parsing, derived from [Tokara-0.5B-v0.1](https://huggingface.co/Kendamarron/Tokara-0.5B-v0.1) refined for [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW).
|
22 |
+
|
23 |
+
## How to Use
|
24 |
+
|
25 |
+
```
|
26 |
+
from transformers import pipeline
|
27 |
+
nlp=pipeline("universal-dependencies","KoichiYasuoka/Tokara-0.5B-ud-embeds",trust_remote_code=True)
|
28 |
+
print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))
|
29 |
+
```
|
30 |
+
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForTokenClassification"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"custom_pipelines": {
|
8 |
+
"upos": {
|
9 |
+
"impl": "ud.BellmanFordTokenClassificationPipeline",
|
10 |
+
"pt": "AutoModelForTokenClassification"
|
11 |
+
},
|
12 |
+
"universal-dependencies": {
|
13 |
+
"impl": "ud.UniversalDependenciesPipeline",
|
14 |
+
"pt": "AutoModelForTokenClassification"
|
15 |
+
}
|
16 |
+
},
|
17 |
+
"eos_token_id": 151643,
|
18 |
+
"hidden_act": "silu",
|
19 |
+
"hidden_size": 1024,
|
20 |
+
"id2label": {
|
21 |
+
"0": "ADJ",
|
22 |
+
"1": "ADJ.",
|
23 |
+
"2": "ADJ|_",
|
24 |
+
"3": "ADJ|l-acl",
|
25 |
+
"4": "ADJ|l-advcl",
|
26 |
+
"5": "ADJ|l-amod",
|
27 |
+
"6": "ADJ|l-ccomp",
|
28 |
+
"7": "ADJ|l-csubj",
|
29 |
+
"8": "ADJ|l-csubj:outer",
|
30 |
+
"9": "ADJ|l-nmod",
|
31 |
+
"10": "ADJ|l-nsubj",
|
32 |
+
"11": "ADJ|l-obj",
|
33 |
+
"12": "ADJ|l-obl",
|
34 |
+
"13": "ADJ|r-acl",
|
35 |
+
"14": "ADJ|r-amod",
|
36 |
+
"15": "ADJ|r-dep",
|
37 |
+
"16": "ADJ|root",
|
38 |
+
"17": "ADP",
|
39 |
+
"18": "ADP.",
|
40 |
+
"19": "ADP|_",
|
41 |
+
"20": "ADP|l-case",
|
42 |
+
"21": "ADP|r-case",
|
43 |
+
"22": "ADP|r-fixed",
|
44 |
+
"23": "ADV",
|
45 |
+
"24": "ADV.",
|
46 |
+
"25": "ADV|_",
|
47 |
+
"26": "ADV|l-advcl",
|
48 |
+
"27": "ADV|l-advmod",
|
49 |
+
"28": "ADV|l-obj",
|
50 |
+
"29": "ADV|r-dep",
|
51 |
+
"30": "ADV|root",
|
52 |
+
"31": "AUX",
|
53 |
+
"32": "AUX.",
|
54 |
+
"33": "AUX|Polarity=Neg|_",
|
55 |
+
"34": "AUX|Polarity=Neg|r-aux",
|
56 |
+
"35": "AUX|Polarity=Neg|r-fixed",
|
57 |
+
"36": "AUX|_",
|
58 |
+
"37": "AUX|r-aux",
|
59 |
+
"38": "AUX|r-cop",
|
60 |
+
"39": "AUX|r-fixed",
|
61 |
+
"40": "AUX|root",
|
62 |
+
"41": "B-ADJ",
|
63 |
+
"42": "B-ADJ.",
|
64 |
+
"43": "B-ADP",
|
65 |
+
"44": "B-ADP.",
|
66 |
+
"45": "B-ADV",
|
67 |
+
"46": "B-ADV.",
|
68 |
+
"47": "B-AUX",
|
69 |
+
"48": "B-AUX.",
|
70 |
+
"49": "B-CCONJ",
|
71 |
+
"50": "B-CCONJ.",
|
72 |
+
"51": "B-DET",
|
73 |
+
"52": "B-DET.",
|
74 |
+
"53": "B-INTJ",
|
75 |
+
"54": "B-INTJ.",
|
76 |
+
"55": "B-NOUN",
|
77 |
+
"56": "B-NOUN.",
|
78 |
+
"57": "B-NUM",
|
79 |
+
"58": "B-NUM.",
|
80 |
+
"59": "B-PART",
|
81 |
+
"60": "B-PART.",
|
82 |
+
"61": "B-PRON",
|
83 |
+
"62": "B-PRON.",
|
84 |
+
"63": "B-PROPN",
|
85 |
+
"64": "B-PROPN.",
|
86 |
+
"65": "B-PUNCT",
|
87 |
+
"66": "B-PUNCT.",
|
88 |
+
"67": "B-SCONJ",
|
89 |
+
"68": "B-SCONJ.",
|
90 |
+
"69": "B-SYM",
|
91 |
+
"70": "B-SYM.",
|
92 |
+
"71": "B-VERB",
|
93 |
+
"72": "B-VERB.",
|
94 |
+
"73": "B-X",
|
95 |
+
"74": "B-X.",
|
96 |
+
"75": "CCONJ",
|
97 |
+
"76": "CCONJ.",
|
98 |
+
"77": "CCONJ|_",
|
99 |
+
"78": "CCONJ|l-cc",
|
100 |
+
"79": "CCONJ|r-cc",
|
101 |
+
"80": "DET",
|
102 |
+
"81": "DET.",
|
103 |
+
"82": "DET|_",
|
104 |
+
"83": "DET|l-det",
|
105 |
+
"84": "I-ADJ",
|
106 |
+
"85": "I-ADJ.",
|
107 |
+
"86": "I-ADP",
|
108 |
+
"87": "I-ADP.",
|
109 |
+
"88": "I-ADV",
|
110 |
+
"89": "I-ADV.",
|
111 |
+
"90": "I-AUX",
|
112 |
+
"91": "I-AUX.",
|
113 |
+
"92": "I-CCONJ",
|
114 |
+
"93": "I-CCONJ.",
|
115 |
+
"94": "I-DET",
|
116 |
+
"95": "I-DET.",
|
117 |
+
"96": "I-INTJ",
|
118 |
+
"97": "I-INTJ.",
|
119 |
+
"98": "I-NOUN",
|
120 |
+
"99": "I-NOUN.",
|
121 |
+
"100": "I-NUM",
|
122 |
+
"101": "I-NUM.",
|
123 |
+
"102": "I-PART",
|
124 |
+
"103": "I-PART.",
|
125 |
+
"104": "I-PRON",
|
126 |
+
"105": "I-PRON.",
|
127 |
+
"106": "I-PROPN",
|
128 |
+
"107": "I-PROPN.",
|
129 |
+
"108": "I-PUNCT",
|
130 |
+
"109": "I-PUNCT.",
|
131 |
+
"110": "I-SCONJ",
|
132 |
+
"111": "I-SCONJ.",
|
133 |
+
"112": "I-SYM",
|
134 |
+
"113": "I-SYM.",
|
135 |
+
"114": "I-VERB",
|
136 |
+
"115": "I-VERB.",
|
137 |
+
"116": "I-X",
|
138 |
+
"117": "I-X.",
|
139 |
+
"118": "INTJ",
|
140 |
+
"119": "INTJ.",
|
141 |
+
"120": "INTJ|_",
|
142 |
+
"121": "INTJ|l-discourse",
|
143 |
+
"122": "INTJ|r-discourse",
|
144 |
+
"123": "INTJ|root",
|
145 |
+
"124": "NOUN",
|
146 |
+
"125": "NOUN.",
|
147 |
+
"126": "NOUN|Polarity=Neg|_",
|
148 |
+
"127": "NOUN|Polarity=Neg|l-obl",
|
149 |
+
"128": "NOUN|Polarity=Neg|root",
|
150 |
+
"129": "NOUN|_",
|
151 |
+
"130": "NOUN|l-acl",
|
152 |
+
"131": "NOUN|l-advcl",
|
153 |
+
"132": "NOUN|l-ccomp",
|
154 |
+
"133": "NOUN|l-compound",
|
155 |
+
"134": "NOUN|l-csubj",
|
156 |
+
"135": "NOUN|l-csubj:outer",
|
157 |
+
"136": "NOUN|l-nmod",
|
158 |
+
"137": "NOUN|l-nsubj",
|
159 |
+
"138": "NOUN|l-nsubj:outer",
|
160 |
+
"139": "NOUN|l-obj",
|
161 |
+
"140": "NOUN|l-obl",
|
162 |
+
"141": "NOUN|r-compound",
|
163 |
+
"142": "NOUN|r-nmod",
|
164 |
+
"143": "NOUN|r-nsubj",
|
165 |
+
"144": "NOUN|root",
|
166 |
+
"145": "NUM",
|
167 |
+
"146": "NUM.",
|
168 |
+
"147": "NUM|_",
|
169 |
+
"148": "NUM|l-advcl",
|
170 |
+
"149": "NUM|l-compound",
|
171 |
+
"150": "NUM|l-nmod",
|
172 |
+
"151": "NUM|l-nsubj",
|
173 |
+
"152": "NUM|l-nsubj:outer",
|
174 |
+
"153": "NUM|l-nummod",
|
175 |
+
"154": "NUM|l-obj",
|
176 |
+
"155": "NUM|l-obl",
|
177 |
+
"156": "NUM|r-compound",
|
178 |
+
"157": "NUM|root",
|
179 |
+
"158": "PART",
|
180 |
+
"159": "PART.",
|
181 |
+
"160": "PART|_",
|
182 |
+
"161": "PART|l-mark",
|
183 |
+
"162": "PART|r-mark",
|
184 |
+
"163": "PRON",
|
185 |
+
"164": "PRON.",
|
186 |
+
"165": "PRON|_",
|
187 |
+
"166": "PRON|l-acl",
|
188 |
+
"167": "PRON|l-advcl",
|
189 |
+
"168": "PRON|l-nmod",
|
190 |
+
"169": "PRON|l-nsubj",
|
191 |
+
"170": "PRON|l-nsubj:outer",
|
192 |
+
"171": "PRON|l-obj",
|
193 |
+
"172": "PRON|l-obl",
|
194 |
+
"173": "PRON|root",
|
195 |
+
"174": "PROPN",
|
196 |
+
"175": "PROPN.",
|
197 |
+
"176": "PROPN|_",
|
198 |
+
"177": "PROPN|l-acl",
|
199 |
+
"178": "PROPN|l-advcl",
|
200 |
+
"179": "PROPN|l-compound",
|
201 |
+
"180": "PROPN|l-nmod",
|
202 |
+
"181": "PROPN|l-nsubj",
|
203 |
+
"182": "PROPN|l-nsubj:outer",
|
204 |
+
"183": "PROPN|l-obj",
|
205 |
+
"184": "PROPN|l-obl",
|
206 |
+
"185": "PROPN|r-compound",
|
207 |
+
"186": "PROPN|r-nmod",
|
208 |
+
"187": "PROPN|root",
|
209 |
+
"188": "PUNCT",
|
210 |
+
"189": "PUNCT.",
|
211 |
+
"190": "PUNCT|_",
|
212 |
+
"191": "PUNCT|l-punct",
|
213 |
+
"192": "PUNCT|r-punct",
|
214 |
+
"193": "SCONJ",
|
215 |
+
"194": "SCONJ.",
|
216 |
+
"195": "SCONJ|_",
|
217 |
+
"196": "SCONJ|l-dep",
|
218 |
+
"197": "SCONJ|r-fixed",
|
219 |
+
"198": "SCONJ|r-mark",
|
220 |
+
"199": "SYM",
|
221 |
+
"200": "SYM.",
|
222 |
+
"201": "SYM|_",
|
223 |
+
"202": "SYM|l-compound",
|
224 |
+
"203": "SYM|l-dep",
|
225 |
+
"204": "SYM|l-nmod",
|
226 |
+
"205": "SYM|l-obl",
|
227 |
+
"206": "SYM|r-compound",
|
228 |
+
"207": "SYM|r-dep",
|
229 |
+
"208": "VERB",
|
230 |
+
"209": "VERB.",
|
231 |
+
"210": "VERB|_",
|
232 |
+
"211": "VERB|l-acl",
|
233 |
+
"212": "VERB|l-advcl",
|
234 |
+
"213": "VERB|l-ccomp",
|
235 |
+
"214": "VERB|l-compound",
|
236 |
+
"215": "VERB|l-csubj",
|
237 |
+
"216": "VERB|l-csubj:outer",
|
238 |
+
"217": "VERB|l-nmod",
|
239 |
+
"218": "VERB|l-obj",
|
240 |
+
"219": "VERB|l-obl",
|
241 |
+
"220": "VERB|r-acl",
|
242 |
+
"221": "VERB|r-advcl",
|
243 |
+
"222": "VERB|r-compound",
|
244 |
+
"223": "VERB|root",
|
245 |
+
"224": "X",
|
246 |
+
"225": "X.",
|
247 |
+
"226": "X|_",
|
248 |
+
"227": "X|l-nmod",
|
249 |
+
"228": "X|r-dep"
|
250 |
+
},
|
251 |
+
"initializer_range": 0.02,
|
252 |
+
"intermediate_size": 2816,
|
253 |
+
"label2id": {
|
254 |
+
"ADJ": 0,
|
255 |
+
"ADJ.": 1,
|
256 |
+
"ADJ|_": 2,
|
257 |
+
"ADJ|l-acl": 3,
|
258 |
+
"ADJ|l-advcl": 4,
|
259 |
+
"ADJ|l-amod": 5,
|
260 |
+
"ADJ|l-ccomp": 6,
|
261 |
+
"ADJ|l-csubj": 7,
|
262 |
+
"ADJ|l-csubj:outer": 8,
|
263 |
+
"ADJ|l-nmod": 9,
|
264 |
+
"ADJ|l-nsubj": 10,
|
265 |
+
"ADJ|l-obj": 11,
|
266 |
+
"ADJ|l-obl": 12,
|
267 |
+
"ADJ|r-acl": 13,
|
268 |
+
"ADJ|r-amod": 14,
|
269 |
+
"ADJ|r-dep": 15,
|
270 |
+
"ADJ|root": 16,
|
271 |
+
"ADP": 17,
|
272 |
+
"ADP.": 18,
|
273 |
+
"ADP|_": 19,
|
274 |
+
"ADP|l-case": 20,
|
275 |
+
"ADP|r-case": 21,
|
276 |
+
"ADP|r-fixed": 22,
|
277 |
+
"ADV": 23,
|
278 |
+
"ADV.": 24,
|
279 |
+
"ADV|_": 25,
|
280 |
+
"ADV|l-advcl": 26,
|
281 |
+
"ADV|l-advmod": 27,
|
282 |
+
"ADV|l-obj": 28,
|
283 |
+
"ADV|r-dep": 29,
|
284 |
+
"ADV|root": 30,
|
285 |
+
"AUX": 31,
|
286 |
+
"AUX.": 32,
|
287 |
+
"AUX|Polarity=Neg|_": 33,
|
288 |
+
"AUX|Polarity=Neg|r-aux": 34,
|
289 |
+
"AUX|Polarity=Neg|r-fixed": 35,
|
290 |
+
"AUX|_": 36,
|
291 |
+
"AUX|r-aux": 37,
|
292 |
+
"AUX|r-cop": 38,
|
293 |
+
"AUX|r-fixed": 39,
|
294 |
+
"AUX|root": 40,
|
295 |
+
"B-ADJ": 41,
|
296 |
+
"B-ADJ.": 42,
|
297 |
+
"B-ADP": 43,
|
298 |
+
"B-ADP.": 44,
|
299 |
+
"B-ADV": 45,
|
300 |
+
"B-ADV.": 46,
|
301 |
+
"B-AUX": 47,
|
302 |
+
"B-AUX.": 48,
|
303 |
+
"B-CCONJ": 49,
|
304 |
+
"B-CCONJ.": 50,
|
305 |
+
"B-DET": 51,
|
306 |
+
"B-DET.": 52,
|
307 |
+
"B-INTJ": 53,
|
308 |
+
"B-INTJ.": 54,
|
309 |
+
"B-NOUN": 55,
|
310 |
+
"B-NOUN.": 56,
|
311 |
+
"B-NUM": 57,
|
312 |
+
"B-NUM.": 58,
|
313 |
+
"B-PART": 59,
|
314 |
+
"B-PART.": 60,
|
315 |
+
"B-PRON": 61,
|
316 |
+
"B-PRON.": 62,
|
317 |
+
"B-PROPN": 63,
|
318 |
+
"B-PROPN.": 64,
|
319 |
+
"B-PUNCT": 65,
|
320 |
+
"B-PUNCT.": 66,
|
321 |
+
"B-SCONJ": 67,
|
322 |
+
"B-SCONJ.": 68,
|
323 |
+
"B-SYM": 69,
|
324 |
+
"B-SYM.": 70,
|
325 |
+
"B-VERB": 71,
|
326 |
+
"B-VERB.": 72,
|
327 |
+
"B-X": 73,
|
328 |
+
"B-X.": 74,
|
329 |
+
"CCONJ": 75,
|
330 |
+
"CCONJ.": 76,
|
331 |
+
"CCONJ|_": 77,
|
332 |
+
"CCONJ|l-cc": 78,
|
333 |
+
"CCONJ|r-cc": 79,
|
334 |
+
"DET": 80,
|
335 |
+
"DET.": 81,
|
336 |
+
"DET|_": 82,
|
337 |
+
"DET|l-det": 83,
|
338 |
+
"I-ADJ": 84,
|
339 |
+
"I-ADJ.": 85,
|
340 |
+
"I-ADP": 86,
|
341 |
+
"I-ADP.": 87,
|
342 |
+
"I-ADV": 88,
|
343 |
+
"I-ADV.": 89,
|
344 |
+
"I-AUX": 90,
|
345 |
+
"I-AUX.": 91,
|
346 |
+
"I-CCONJ": 92,
|
347 |
+
"I-CCONJ.": 93,
|
348 |
+
"I-DET": 94,
|
349 |
+
"I-DET.": 95,
|
350 |
+
"I-INTJ": 96,
|
351 |
+
"I-INTJ.": 97,
|
352 |
+
"I-NOUN": 98,
|
353 |
+
"I-NOUN.": 99,
|
354 |
+
"I-NUM": 100,
|
355 |
+
"I-NUM.": 101,
|
356 |
+
"I-PART": 102,
|
357 |
+
"I-PART.": 103,
|
358 |
+
"I-PRON": 104,
|
359 |
+
"I-PRON.": 105,
|
360 |
+
"I-PROPN": 106,
|
361 |
+
"I-PROPN.": 107,
|
362 |
+
"I-PUNCT": 108,
|
363 |
+
"I-PUNCT.": 109,
|
364 |
+
"I-SCONJ": 110,
|
365 |
+
"I-SCONJ.": 111,
|
366 |
+
"I-SYM": 112,
|
367 |
+
"I-SYM.": 113,
|
368 |
+
"I-VERB": 114,
|
369 |
+
"I-VERB.": 115,
|
370 |
+
"I-X": 116,
|
371 |
+
"I-X.": 117,
|
372 |
+
"INTJ": 118,
|
373 |
+
"INTJ.": 119,
|
374 |
+
"INTJ|_": 120,
|
375 |
+
"INTJ|l-discourse": 121,
|
376 |
+
"INTJ|r-discourse": 122,
|
377 |
+
"INTJ|root": 123,
|
378 |
+
"NOUN": 124,
|
379 |
+
"NOUN.": 125,
|
380 |
+
"NOUN|Polarity=Neg|_": 126,
|
381 |
+
"NOUN|Polarity=Neg|l-obl": 127,
|
382 |
+
"NOUN|Polarity=Neg|root": 128,
|
383 |
+
"NOUN|_": 129,
|
384 |
+
"NOUN|l-acl": 130,
|
385 |
+
"NOUN|l-advcl": 131,
|
386 |
+
"NOUN|l-ccomp": 132,
|
387 |
+
"NOUN|l-compound": 133,
|
388 |
+
"NOUN|l-csubj": 134,
|
389 |
+
"NOUN|l-csubj:outer": 135,
|
390 |
+
"NOUN|l-nmod": 136,
|
391 |
+
"NOUN|l-nsubj": 137,
|
392 |
+
"NOUN|l-nsubj:outer": 138,
|
393 |
+
"NOUN|l-obj": 139,
|
394 |
+
"NOUN|l-obl": 140,
|
395 |
+
"NOUN|r-compound": 141,
|
396 |
+
"NOUN|r-nmod": 142,
|
397 |
+
"NOUN|r-nsubj": 143,
|
398 |
+
"NOUN|root": 144,
|
399 |
+
"NUM": 145,
|
400 |
+
"NUM.": 146,
|
401 |
+
"NUM|_": 147,
|
402 |
+
"NUM|l-advcl": 148,
|
403 |
+
"NUM|l-compound": 149,
|
404 |
+
"NUM|l-nmod": 150,
|
405 |
+
"NUM|l-nsubj": 151,
|
406 |
+
"NUM|l-nsubj:outer": 152,
|
407 |
+
"NUM|l-nummod": 153,
|
408 |
+
"NUM|l-obj": 154,
|
409 |
+
"NUM|l-obl": 155,
|
410 |
+
"NUM|r-compound": 156,
|
411 |
+
"NUM|root": 157,
|
412 |
+
"PART": 158,
|
413 |
+
"PART.": 159,
|
414 |
+
"PART|_": 160,
|
415 |
+
"PART|l-mark": 161,
|
416 |
+
"PART|r-mark": 162,
|
417 |
+
"PRON": 163,
|
418 |
+
"PRON.": 164,
|
419 |
+
"PRON|_": 165,
|
420 |
+
"PRON|l-acl": 166,
|
421 |
+
"PRON|l-advcl": 167,
|
422 |
+
"PRON|l-nmod": 168,
|
423 |
+
"PRON|l-nsubj": 169,
|
424 |
+
"PRON|l-nsubj:outer": 170,
|
425 |
+
"PRON|l-obj": 171,
|
426 |
+
"PRON|l-obl": 172,
|
427 |
+
"PRON|root": 173,
|
428 |
+
"PROPN": 174,
|
429 |
+
"PROPN.": 175,
|
430 |
+
"PROPN|_": 176,
|
431 |
+
"PROPN|l-acl": 177,
|
432 |
+
"PROPN|l-advcl": 178,
|
433 |
+
"PROPN|l-compound": 179,
|
434 |
+
"PROPN|l-nmod": 180,
|
435 |
+
"PROPN|l-nsubj": 181,
|
436 |
+
"PROPN|l-nsubj:outer": 182,
|
437 |
+
"PROPN|l-obj": 183,
|
438 |
+
"PROPN|l-obl": 184,
|
439 |
+
"PROPN|r-compound": 185,
|
440 |
+
"PROPN|r-nmod": 186,
|
441 |
+
"PROPN|root": 187,
|
442 |
+
"PUNCT": 188,
|
443 |
+
"PUNCT.": 189,
|
444 |
+
"PUNCT|_": 190,
|
445 |
+
"PUNCT|l-punct": 191,
|
446 |
+
"PUNCT|r-punct": 192,
|
447 |
+
"SCONJ": 193,
|
448 |
+
"SCONJ.": 194,
|
449 |
+
"SCONJ|_": 195,
|
450 |
+
"SCONJ|l-dep": 196,
|
451 |
+
"SCONJ|r-fixed": 197,
|
452 |
+
"SCONJ|r-mark": 198,
|
453 |
+
"SYM": 199,
|
454 |
+
"SYM.": 200,
|
455 |
+
"SYM|_": 201,
|
456 |
+
"SYM|l-compound": 202,
|
457 |
+
"SYM|l-dep": 203,
|
458 |
+
"SYM|l-nmod": 204,
|
459 |
+
"SYM|l-obl": 205,
|
460 |
+
"SYM|r-compound": 206,
|
461 |
+
"SYM|r-dep": 207,
|
462 |
+
"VERB": 208,
|
463 |
+
"VERB.": 209,
|
464 |
+
"VERB|_": 210,
|
465 |
+
"VERB|l-acl": 211,
|
466 |
+
"VERB|l-advcl": 212,
|
467 |
+
"VERB|l-ccomp": 213,
|
468 |
+
"VERB|l-compound": 214,
|
469 |
+
"VERB|l-csubj": 215,
|
470 |
+
"VERB|l-csubj:outer": 216,
|
471 |
+
"VERB|l-nmod": 217,
|
472 |
+
"VERB|l-obj": 218,
|
473 |
+
"VERB|l-obl": 219,
|
474 |
+
"VERB|r-acl": 220,
|
475 |
+
"VERB|r-advcl": 221,
|
476 |
+
"VERB|r-compound": 222,
|
477 |
+
"VERB|root": 223,
|
478 |
+
"X": 224,
|
479 |
+
"X.": 225,
|
480 |
+
"X|_": 226,
|
481 |
+
"X|l-nmod": 227,
|
482 |
+
"X|r-dep": 228
|
483 |
+
},
|
484 |
+
"max_position_embeddings": 32768,
|
485 |
+
"max_window_layers": 21,
|
486 |
+
"model_type": "qwen2",
|
487 |
+
"num_attention_heads": 16,
|
488 |
+
"num_hidden_layers": 24,
|
489 |
+
"num_key_value_heads": 16,
|
490 |
+
"rms_norm_eps": 1e-06,
|
491 |
+
"rope_scaling": null,
|
492 |
+
"rope_theta": 1000000.0,
|
493 |
+
"sliding_window": null,
|
494 |
+
"tie_word_embeddings": true,
|
495 |
+
"torch_dtype": "float32",
|
496 |
+
"transformers_version": "4.48.3",
|
497 |
+
"use_cache": true,
|
498 |
+
"use_sliding_window": false,
|
499 |
+
"vocab_size": 151936
|
500 |
+
}
|
maker.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python3
|
2 |
+
src="Kendamarron/Tokara-0.5B-v0.1"
|
3 |
+
tgt="KoichiYasuoka/Tokara-0.5B-ud-embeds"
|
4 |
+
url="https://github.com/UniversalDependencies/UD_Japanese-GSDLUW"
|
5 |
+
import os
|
6 |
+
d=os.path.basename(url)
|
7 |
+
os.system("test -d "+d+" || git clone --depth=1 "+url)
|
8 |
+
os.system("for F in train dev test ; do cp "+d+"/*-$F.conllu $F.conllu ; done")
|
9 |
+
class UDEmbedsDataset(object):
|
10 |
+
def __init__(self,conllu,tokenizer,oldtokenizer=None,embeddings=None):
|
11 |
+
self.conllu=open(conllu,"r",encoding="utf-8")
|
12 |
+
self.tokenizer=tokenizer
|
13 |
+
self.oldtokenizer=oldtokenizer if oldtokenizer else tokenizer
|
14 |
+
self.embeddings=embeddings
|
15 |
+
self.seeks=[0]
|
16 |
+
label=set(["SYM","SYM.","SYM|_"])
|
17 |
+
dep=set()
|
18 |
+
s=self.conllu.readline()
|
19 |
+
while s!="":
|
20 |
+
if s=="\n":
|
21 |
+
self.seeks.append(self.conllu.tell())
|
22 |
+
else:
|
23 |
+
w=s.split("\t")
|
24 |
+
if len(w)==10:
|
25 |
+
if w[0].isdecimal():
|
26 |
+
p=w[3]
|
27 |
+
q="" if w[5]=="_" else "|"+w[5]
|
28 |
+
d=("|" if w[6]=="0" else "|l-" if int(w[0])<int(w[6]) else "|r-")+w[7]
|
29 |
+
for k in [p,p+".","B-"+p,"B-"+p+".","I-"+p,"I-"+p+".",p+q+"|_",p+q+d]:
|
30 |
+
label.add(k)
|
31 |
+
s=self.conllu.readline()
|
32 |
+
self.label2id={l:i for i,l in enumerate(sorted(label))}
|
33 |
+
def __call__(*args):
|
34 |
+
lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))}
|
35 |
+
for t in args:
|
36 |
+
t.label2id=lid
|
37 |
+
return lid
|
38 |
+
def __del__(self):
|
39 |
+
self.conllu.close()
|
40 |
+
__len__=lambda self:len(self.seeks)-1
|
41 |
+
def __getitem__(self,i):
|
42 |
+
import torch
|
43 |
+
self.conllu.seek(self.seeks[i])
|
44 |
+
c,t,s=[],[""],False
|
45 |
+
while t[0]!="\n":
|
46 |
+
t=self.conllu.readline().split("\t")
|
47 |
+
if len(t)==10 and t[0].isdecimal():
|
48 |
+
if s:
|
49 |
+
t[1]=" "+t[1]
|
50 |
+
c.append(t)
|
51 |
+
s=t[9].find("SpaceAfter=No")<0
|
52 |
+
x=[True if t[6]=="0" or int(t[6])>j or sum([1 if int(c[i][6])==j+1 else 0 for i in range(j+1,len(c))])>0 else False for j,t in enumerate(c)]
|
53 |
+
v=self.tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"]
|
54 |
+
ids,upos=[],[]
|
55 |
+
for i,(j,k) in enumerate(zip(v,c)):
|
56 |
+
if j==[]:
|
57 |
+
j=self.tokenizer("〓")["input_ids"]
|
58 |
+
p=k[3] if x[i] else k[3]+"."
|
59 |
+
ids+=j
|
60 |
+
upos+=[p] if len(j)==1 else ["B-"+p]+["I-"+p]*(len(j)-1)
|
61 |
+
v=self.oldtokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"]
|
62 |
+
p=[t[3] if t[5]=="_" else t[3]+"|"+t[5] for i,t in enumerate(c)]
|
63 |
+
d=[t[7] if t[6]=="0" else "l-"+t[7] if int(t[0])<int(t[6]) else "r-"+t[7] for t in c]
|
64 |
+
idx=[-1]
|
65 |
+
upos.append("SYM|_")
|
66 |
+
for i in range(len(x)):
|
67 |
+
idx.append(i)
|
68 |
+
upos.append(p[i]+"|"+d[i] if c[i][6]=="0" else p[i]+"|_")
|
69 |
+
for j in range(i+1,len(x)):
|
70 |
+
idx.append(j)
|
71 |
+
upos.append(p[j]+"|"+d[j] if int(c[j][6])==i+1 else p[i]+"|"+d[i] if int(c[i][6])==j+1 else p[j]+"|_")
|
72 |
+
idx.append(-1)
|
73 |
+
upos.append("SYM|_")
|
74 |
+
with torch.no_grad():
|
75 |
+
m=[]
|
76 |
+
for j in v:
|
77 |
+
if j==[]:
|
78 |
+
j=self.tokenizer("〓")["input_ids"]
|
79 |
+
m.append(self.embeddings[j,:].sum(axis=0))
|
80 |
+
m.append(self.embeddings[self.tokenizer("<|im_end|>")["input_ids"][0],:])
|
81 |
+
emb=torch.stack(m)
|
82 |
+
return{"inputs_embeds":torch.vstack((self.embeddings[ids,:],emb[idx,:])),"labels":[self.label2id[p] for p in upos]}
|
83 |
+
from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DefaultDataCollator,TrainingArguments,Trainer
|
84 |
+
from tokenizers.pre_tokenizers import Sequence,Split
|
85 |
+
from tokenizers import Regex
|
86 |
+
from copy import deepcopy
|
87 |
+
otk=AutoTokenizer.from_pretrained(src)
|
88 |
+
ntk=deepcopy(otk)
|
89 |
+
ntk.backend_tokenizer.pre_tokenizer=Sequence([Split(Regex("[ぁ-ん]"),"isolated"),otk.backend_tokenizer.pre_tokenizer])
|
90 |
+
trainDS=UDEmbedsDataset("train.conllu",ntk,otk)
|
91 |
+
devDS=UDEmbedsDataset("dev.conllu",ntk,otk)
|
92 |
+
testDS=UDEmbedsDataset("test.conllu",ntk,otk)
|
93 |
+
lid=trainDS(devDS,testDS)
|
94 |
+
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True,trust_remote_code=True)
|
95 |
+
mdl=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True,trust_remote_code=True)
|
96 |
+
trainDS.embeddings=mdl.get_input_embeddings().weight
|
97 |
+
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=1,dataloader_pin_memory=False,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False)
|
98 |
+
trn=Trainer(args=arg,data_collator=DefaultDataCollator(),model=mdl,train_dataset=trainDS)
|
99 |
+
trn.train()
|
100 |
+
trn.save_model(tgt)
|
101 |
+
otk.save_pretrained(tgt)
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa2e032426b5f8645f0b9339d3eb66f94b6f724c7b7f70a4f0d9dbf3cf1a6f61
|
3 |
+
size 1856987866
|
special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_eos_token": true,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [
|
31 |
+
"<|im_start|>",
|
32 |
+
"<|im_end|>"
|
33 |
+
],
|
34 |
+
"bos_token": "<|endoftext|>",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|endoftext|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"extra_special_tokens": {},
|
39 |
+
"model_max_length": 32768,
|
40 |
+
"pad_token": "<|endoftext|>",
|
41 |
+
"split_special_tokens": false,
|
42 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
43 |
+
"unk_token": null
|
44 |
+
}
|
ud.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy
|
2 |
+
from transformers import TokenClassificationPipeline
|
3 |
+
|
4 |
+
class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
|
5 |
+
def __init__(self,**kwargs):
|
6 |
+
from copy import deepcopy
|
7 |
+
from tokenizers import Regex
|
8 |
+
from tokenizers.pre_tokenizers import Sequence,Split
|
9 |
+
super().__init__(**kwargs)
|
10 |
+
self.oldtokenizer=deepcopy(self.tokenizer)
|
11 |
+
self.tokenizer.backend_tokenizer.pre_tokenizer=Sequence([Split(Regex("[ぁ-ん]"),"isolated"),self.oldtokenizer.backend_tokenizer.pre_tokenizer])
|
12 |
+
x=self.model.config.label2id
|
13 |
+
y=[k for k in x if k.find("|")<0 and not k.startswith("I-")]
|
14 |
+
self.transition=numpy.full((len(x),len(x)),-numpy.inf)
|
15 |
+
for k,v in x.items():
|
16 |
+
if k.find("|")<0:
|
17 |
+
for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
|
18 |
+
self.transition[v,x[j]]=0
|
19 |
+
def check_model_type(self,supported_models):
|
20 |
+
pass
|
21 |
+
def postprocess(self,model_outputs,**kwargs):
|
22 |
+
if "logits" not in model_outputs:
|
23 |
+
return self.postprocess(model_outputs[0],**kwargs)
|
24 |
+
return self.bellman_ford_token_classification(model_outputs,**kwargs)
|
25 |
+
def bellman_ford_token_classification(self,model_outputs,**kwargs):
|
26 |
+
m=model_outputs["logits"][0].numpy()
|
27 |
+
e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
|
28 |
+
z=e/e.sum(axis=-1,keepdims=True)
|
29 |
+
for i in range(m.shape[0]-1,0,-1):
|
30 |
+
m[i-1]+=numpy.max(m[i]+self.transition,axis=1)
|
31 |
+
k=[numpy.argmax(m[0]+self.transition[0])]
|
32 |
+
for i in range(1,m.shape[0]):
|
33 |
+
k.append(numpy.argmax(m[i]+self.transition[k[-1]]))
|
34 |
+
w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
|
35 |
+
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
|
36 |
+
for i,t in reversed(list(enumerate(w))):
|
37 |
+
p=t.pop("entity")
|
38 |
+
if p.startswith("I-"):
|
39 |
+
w[i-1]["score"]=min(w[i-1]["score"],t["score"])
|
40 |
+
w[i-1]["end"]=w.pop(i)["end"]
|
41 |
+
elif i>0 and w[i-1]["end"]>t["start"]:
|
42 |
+
w[i-1]["score"]=min(w[i-1]["score"],t["score"])
|
43 |
+
w[i-1]["end"]=w.pop(i)["end"]
|
44 |
+
elif p.startswith("B-"):
|
45 |
+
t["entity_group"]=p[2:]
|
46 |
+
else:
|
47 |
+
t["entity_group"]=p
|
48 |
+
for t in w:
|
49 |
+
t["text"]=model_outputs["sentence"][t["start"]:t["end"]]
|
50 |
+
return w
|
51 |
+
|
52 |
+
class UniversalDependenciesPipeline(BellmanFordTokenClassificationPipeline):
|
53 |
+
def __init__(self,**kwargs):
|
54 |
+
kwargs["aggregation_strategy"]="simple"
|
55 |
+
super().__init__(**kwargs)
|
56 |
+
x=self.model.config.label2id
|
57 |
+
self.root=numpy.full((len(x)),-numpy.inf)
|
58 |
+
self.left_arc=numpy.full((len(x)),-numpy.inf)
|
59 |
+
self.right_arc=numpy.full((len(x)),-numpy.inf)
|
60 |
+
for k,v in x.items():
|
61 |
+
if k.endswith("|root"):
|
62 |
+
self.root[v]=0
|
63 |
+
elif k.find("|l-")>0:
|
64 |
+
self.left_arc[v]=0
|
65 |
+
elif k.find("|r-")>0:
|
66 |
+
self.right_arc[v]=0
|
67 |
+
def postprocess(self,model_outputs,**kwargs):
|
68 |
+
import torch
|
69 |
+
kwargs["aggregation_strategy"]="simple"
|
70 |
+
if "logits" not in model_outputs:
|
71 |
+
return self.postprocess(model_outputs[0],**kwargs)
|
72 |
+
w=self.bellman_ford_token_classification(model_outputs,**kwargs)
|
73 |
+
off=[(t["start"],t["end"]) for t in w]
|
74 |
+
for i,(s,e) in reversed(list(enumerate(off))):
|
75 |
+
if s<e:
|
76 |
+
d=w[i]["text"]
|
77 |
+
j=len(d)-len(d.lstrip())
|
78 |
+
if j>0:
|
79 |
+
d=d.lstrip()
|
80 |
+
off[i]=(off[i][0]+j,off[i][1])
|
81 |
+
j=len(d)-len(d.rstrip())
|
82 |
+
if j>0:
|
83 |
+
d=d.rstrip()
|
84 |
+
off[i]=(off[i][0],off[i][1]-j)
|
85 |
+
if d.strip()=="":
|
86 |
+
off.pop(i)
|
87 |
+
w.pop(i)
|
88 |
+
v=self.oldtokenizer([t["text"] for t in w],add_special_tokens=False)
|
89 |
+
x=[not t["entity_group"].endswith(".") for t in w]
|
90 |
+
z=model_outputs["input_ids"][0]
|
91 |
+
if len(x)<254:
|
92 |
+
x=[True]*len(x)
|
93 |
+
else:
|
94 |
+
k=sum([len(x)-i+1 if b else 0 for i,b in enumerate(x)])+len(z)+1
|
95 |
+
for i in numpy.argsort(numpy.array([t["score"] for t in w])):
|
96 |
+
if x[i]==False and k+len(x)-i<32768:
|
97 |
+
x[i]=True
|
98 |
+
k+=len(x)-i+1
|
99 |
+
ids=[-1]
|
100 |
+
for i in range(len(x)):
|
101 |
+
if x[i]:
|
102 |
+
ids.append(i)
|
103 |
+
for j in range(i+1,len(x)):
|
104 |
+
ids.append(j)
|
105 |
+
ids.append(-1)
|
106 |
+
with torch.no_grad():
|
107 |
+
e=self.model.get_input_embeddings().weight
|
108 |
+
m=[]
|
109 |
+
for j in v["input_ids"]:
|
110 |
+
if j==[]:
|
111 |
+
j=self.tokenizer("〓")["input_ids"]
|
112 |
+
m.append(e[j,:].sum(axis=0))
|
113 |
+
m.append(e[self.tokenizer("<|im_end|>")["input_ids"][0],:])
|
114 |
+
m=torch.stack(m).to(self.device)
|
115 |
+
e=self.model(inputs_embeds=torch.unsqueeze(torch.vstack((e[z,:],m[ids,:])),0))
|
116 |
+
m=e.logits[0].cpu().numpy()
|
117 |
+
e=numpy.full((len(x),len(x),m.shape[-1]),m.min())
|
118 |
+
k=len(z)+1
|
119 |
+
for i in range(len(x)):
|
120 |
+
if x[i]:
|
121 |
+
e[i,i]=m[k]+self.root
|
122 |
+
k+=1
|
123 |
+
for j in range(1,len(x)-i):
|
124 |
+
e[i+j,i]=m[k]+self.left_arc
|
125 |
+
e[i,i+j]=m[k]+self.right_arc
|
126 |
+
k+=1
|
127 |
+
k+=1
|
128 |
+
m,p=numpy.max(e,axis=2),numpy.argmax(e,axis=2)
|
129 |
+
h=self.chu_liu_edmonds(m)
|
130 |
+
z=[i for i,j in enumerate(h) if i==j]
|
131 |
+
if len(z)>1:
|
132 |
+
k,h=z[numpy.argmax(m[z,z])],numpy.min(m)-numpy.max(m)
|
133 |
+
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
|
134 |
+
h=self.chu_liu_edmonds(m)
|
135 |
+
q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
|
136 |
+
t=model_outputs["sentence"].replace("\n"," ")
|
137 |
+
u="# text = "+t+"\n"
|
138 |
+
for i,(s,e) in enumerate(off):
|
139 |
+
u+="\t".join([str(i+1),t[s:e],"_",q[i][0],"_","_" if len(q[i])<3 else "|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),"root" if q[i][-1]=="root" else q[i][-1][2:],"_","_" if i+1<len(off) and e<off[i+1][0] else "SpaceAfter=No"])+"\n"
|
140 |
+
return u+"\n"
|
141 |
+
def chu_liu_edmonds(self,matrix):
|
142 |
+
h=numpy.argmax(matrix,axis=0)
|
143 |
+
x=[-1 if i==j else j for i,j in enumerate(h)]
|
144 |
+
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
|
145 |
+
y=[]
|
146 |
+
while x!=y:
|
147 |
+
y=list(x)
|
148 |
+
for i,j in enumerate(x):
|
149 |
+
x[i]=b(x,i,j)
|
150 |
+
if max(x)<0:
|
151 |
+
return h
|
152 |
+
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
|
153 |
+
z=matrix-numpy.max(matrix,axis=0)
|
154 |
+
m=numpy.block([[z[x,:][:,x],numpy.max(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.max(z[y,:][:,x],axis=0),numpy.max(z[y,y])]])
|
155 |
+
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.argmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
|
156 |
+
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
|
157 |
+
i=y[numpy.argmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
|
158 |
+
h[i]=x[k[-1]] if k[-1]<len(x) else i
|
159 |
+
return h
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|