|
from transformers import TokenClassificationPipeline,MistralModel,MistralPreTrainedModel |
|
from transformers.modeling_outputs import TokenClassifierOutput |
|
|
|
class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline): |
|
def __init__(self,**kwargs): |
|
import numpy |
|
super().__init__(**kwargs) |
|
x=self.model.config.label2id |
|
y=[k for k in x if not k.startswith("I-")] |
|
self.transition=numpy.full((len(x),len(x)),numpy.nan) |
|
for k,v in x.items(): |
|
for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y: |
|
self.transition[v,x[j]]=0 |
|
def check_model_type(self,supported_models): |
|
pass |
|
def postprocess(self,model_outputs,**kwargs): |
|
import numpy |
|
if "logits" not in model_outputs: |
|
return self.postprocess(model_outputs[0],**kwargs) |
|
m=model_outputs["logits"][0].numpy() |
|
e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True)) |
|
z=e/e.sum(axis=-1,keepdims=True) |
|
for i in range(m.shape[0]-1,0,-1): |
|
m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1) |
|
k=[numpy.nanargmax(m[0])] |
|
for i in range(1,m.shape[0]): |
|
k.append(numpy.nanargmax(m[i]+self.transition[k[-1]])) |
|
w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e] |
|
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none": |
|
for i,t in reversed(list(enumerate(w))): |
|
p=t.pop("entity") |
|
if p.startswith("I-"): |
|
w[i-1]["score"]=min(w[i-1]["score"],t["score"]) |
|
w[i-1]["end"]=w.pop(i)["end"] |
|
elif p.startswith("B-"): |
|
t["entity_group"]=p[2:] |
|
else: |
|
t["entity_group"]=p |
|
for t in w: |
|
t["text"]=model_outputs["sentence"][t["start"]:t["end"]] |
|
return w |
|
|
|
class MistralForTokenClassification(MistralPreTrainedModel): |
|
def __init__(self,config): |
|
from torch import nn |
|
super().__init__(config) |
|
self.num_labels=config.num_labels |
|
self.model=MistralModel(config) |
|
if hasattr(config,"classifier_dropout") and config.classifier_dropout is not None: |
|
classifier_dropout=config.classifier_dropout |
|
elif hasattr(config,"hidden_dropout") and config.hidden_dropout is not None: |
|
classifier_dropout=config.hidden_dropout |
|
else: |
|
classifier_dropout=0.1 |
|
self.dropout=nn.Dropout(classifier_dropout) |
|
self.classifier=nn.Linear(config.hidden_size,config.num_labels) |
|
self.post_init() |
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
def set_input_embeddings(self,value): |
|
self.model.embed_tokens=value |
|
def forward(self,input_ids=None,past_key_values=None,attention_mask=None,position_ids=None,inputs_embeds=None,labels=None,use_cache=None,output_attentions=None,output_hidden_states=None,return_dict=None): |
|
return_dict=return_dict if return_dict is not None else self.config.use_return_dict |
|
transformer_outputs=self.model(input_ids,past_key_values=past_key_values,attention_mask=attention_mask,position_ids=position_ids,inputs_embeds=inputs_embeds,use_cache=use_cache,output_attentions=output_attentions,output_hidden_states=output_hidden_states,return_dict=return_dict) |
|
hidden_states=transformer_outputs[0] |
|
hidden_states=self.dropout(hidden_states) |
|
logits=self.classifier(hidden_states) |
|
loss=None |
|
if labels is not None: |
|
from torch import nn |
|
loss_fct=nn.CrossEntropyLoss() |
|
loss=loss_fct(logits.view(-1,self.num_labels),labels.view(-1)) |
|
if not return_dict: |
|
output=(logits,)+transformer_outputs[1:] |
|
return ((loss,)+output) if loss is not None else output |
|
return TokenClassifierOutput(loss=loss,logits=logits,hidden_states=transformer_outputs.hidden_states,attentions=transformer_outputs.attentions) |
|
|