|
--- |
|
language: |
|
- ru |
|
tags: |
|
- mbart |
|
inference: |
|
parameters: |
|
no_repeat_ngram_size: 4, |
|
num_beams: 5 |
|
datasets: |
|
- IlyaGusev/gazeta |
|
- samsum |
|
- samsum_(translated_into_Russian) |
|
widget: |
|
- text: > |
|
Джефф: Могу ли я обучить модель 🤗 Transformers на Amazon SageMaker? |
|
|
|
Филипп: Конечно, вы можете использовать новый контейнер для глубокого |
|
обучения HuggingFace. |
|
|
|
Джефф: Хорошо. |
|
|
|
Джефф: и как я могу начать? |
|
|
|
Джефф: где я могу найти документацию? |
|
|
|
Филипп: ок, ок, здесь можно найти все: |
|
https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face |
|
model-index: |
|
- name: mbart_ruDialogSum |
|
results: |
|
- task: |
|
name: Abstractive Dialogue Summarization |
|
type: abstractive-text-summarization |
|
dataset: |
|
name: SAMSum Corpus (translated to Russian) |
|
type: samsum |
|
metrics: |
|
- name: Validation ROGUE-1 |
|
type: rogue-1 |
|
value: 34.5 |
|
- name: Validation ROGUE-L |
|
type: rogue-l |
|
value: 33 |
|
- name: Test ROGUE-1 |
|
type: rogue-1 |
|
value: 31 |
|
- name: Test ROGUE-L |
|
type: rogue-l |
|
value: 28 |
|
license: cc |
|
--- |
|
### 📝 Description |
|
|
|
MBart for Russian summarization fine-tuned for **dialogues** summarization. |
|
|
|
|
|
This model was firstly fine-tuned by [Ilya Gusev](https://hf.co/IlyaGusev) on [Gazeta dataset](https://huggingface.co/datasets/IlyaGusev/gazeta). We have **fine tuned** that model on [SamSum dataset](https://huggingface.co/datasets/samsum) **translated to Russian** using GoogleTranslateAPI |
|
|
|
🤗 Moreover! We have implemented a **! telegram bot [@summarization_bot](https://t.me/summarization_bot) !** with the inference of this model. Add it to the chat and get summaries instead of dozens spam messages! 🤗 |
|
|
|
|
|
### ❓ How to use with code |
|
```python |
|
from transformers import MBartTokenizer, MBartForConditionalGeneration |
|
|
|
# Download model and tokenizer |
|
model_name = "Kirili4ik/mbart_ruDialogSum" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = MBartForConditionalGeneration.from_pretrained(model_name) |
|
model.eval() |
|
|
|
article_text = "..." |
|
|
|
input_ids = tokenizer( |
|
[article_text], |
|
max_length=600, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors="pt", |
|
)["input_ids"] |
|
|
|
output_ids = model.generate( |
|
input_ids=input_ids, |
|
top_k=0, |
|
num_beams=3, |
|
no_repeat_ngram_size=3 |
|
)[0] |
|
|
|
|
|
summary = tokenizer.decode(output_ids, skip_special_tokens=True) |
|
print(summary) |
|
``` |