KingNish commited on
Commit
d164caf
1 Parent(s): 19be0db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -7
README.md CHANGED
@@ -1,8 +1,10 @@
1
  ---
2
- base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
 
 
3
  language:
4
  - en
5
- license: apache-2.0
6
  tags:
7
  - text-generation-inference
8
  - transformers
@@ -10,14 +12,55 @@ tags:
10
  - llama
11
  - trl
12
  - sft
 
 
13
  ---
14
 
15
- # Uploaded model
16
 
17
- - **Developed by:** KingNish
18
- - **License:** apache-2.0
19
- - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
22
 
23
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
1
  ---
2
+ base_model: meta-llama/Llama-3.2-3B-Instruct
3
+ datasets:
4
+ - KingNish/reasoning-base-20k
5
  language:
6
  - en
7
+ license: llama3.2
8
  tags:
9
  - text-generation-inference
10
  - transformers
 
12
  - llama
13
  - trl
14
  - sft
15
+ - reasoning
16
+ - llama-3
17
  ---
18
 
19
+ # Model Dexcription
20
 
21
+ It's First iteration of this model. For testing purpose its just trained on 10k rows.
22
+ It performed very well than expected. It do first reasoning and than generate response on based on it but it do like o1.
23
+ It do reasoning separately (Just like o1), no tags (like reflection).
24
+ Below is inference code.
25
+ ```python
26
+ from transformers import AutoModelForCausalLM, AutoTokenizer
27
+
28
+ MAX_REASONING_TOKENS = 4096
29
+ MAX_RESPONSE_TOKENS = 1024
30
+
31
+ model_name = "KingNish/Reasoning-Llama-3b-v0.1"
32
+
33
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
34
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
35
+
36
+ prompt = "Which is greater 9.9 or 9.11 ??"
37
+ messages = [
38
+ {"role": "user", "content": prompt}
39
+ ]
40
+
41
+ # Generate reasoning
42
+ reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
43
+ reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
44
+ reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
45
+ reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
46
+
47
+ # print("REASONING: " + reasoning_output)
48
+
49
+ # Generate answer
50
+ messages.append({"role": "reasoning", "content": reasoning_output})
51
+ response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
52
+ response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
53
+ response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
54
+ response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)
55
+
56
+ print("ANSWER: " + response_output)
57
+ ```
58
+
59
+ - **Trained by:** [Nishith Jain](https://huggingface.co/KingNish)
60
+ - **License:** llama3.2
61
+ - **Finetuned from model :** [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
62
+ - **Dataset used :** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k)
63
 
64
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
65
 
66
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)