metadata
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
xsum_108_3000_1500_validation
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("KingKazma/xsum_108_3000_1500_validation")
topic_model.get_topic_info()
Topic overview
- Number of topics: 3
- Number of training documents: 1500
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | yn - ar - yr - mae - wedi | 408 | -1_yn_ar_yr_mae |
0 | said - mr - would - people - also | 9 | 0_said_mr_would_people |
1 | win - game - said - player - team | 1083 | 1_win_game_said_player |
Training hyperparameters
- calculate_probabilities: True
- language: english
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: None
- seed_topic_list: None
- top_n_words: 10
- verbose: False
Framework versions
- Numpy: 1.22.4
- HDBSCAN: 0.8.33
- UMAP: 0.5.3
- Pandas: 1.5.3
- Scikit-Learn: 1.2.2
- Sentence-transformers: 2.2.2
- Transformers: 4.31.0
- Numba: 0.57.1
- Plotly: 5.13.1
- Python: 3.10.12