CN_RoBERTa_Dig / README.md
Kghate's picture
End of training
3b931ac
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: CN_RoBERTa_Dig
    results: []

CN_RoBERTa_Dig

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0055
  • F1: {'f1': 0.9988009592326139}
  • Accuracy: {'accuracy': 0.9988}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy
0.4018 0.09 1000 0.3457 {'f1': 0.6695906432748538} {'accuracy': 0.7514}
0.3392 0.18 2000 0.2601 {'f1': 0.9148995796356842} {'accuracy': 0.9089}
0.2443 0.27 3000 0.1276 {'f1': 0.9713375796178344} {'accuracy': 0.9712}
0.1399 0.36 4000 0.0616 {'f1': 0.9867973594718943} {'accuracy': 0.9868}
0.0926 0.44 5000 0.0280 {'f1': 0.9927341494973624} {'accuracy': 0.9927}
0.0835 0.53 6000 0.0260 {'f1': 0.9942196531791908} {'accuracy': 0.9942}
0.0617 0.62 7000 0.0129 {'f1': 0.9969981989193516} {'accuracy': 0.997}
0.0459 0.71 8000 0.0097 {'f1': 0.9977029861180465} {'accuracy': 0.9977}
0.0363 0.8 9000 0.0111 {'f1': 0.9976047904191618} {'accuracy': 0.9976}
0.0421 0.89 10000 0.0078 {'f1': 0.9980035935316429} {'accuracy': 0.998}
0.0317 0.98 11000 0.0055 {'f1': 0.9988009592326139} {'accuracy': 0.9988}

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0