|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- pub_med_summarization_dataset |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: pegasus-large-finetuned-Pubmed |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: pub_med_summarization_dataset |
|
type: pub_med_summarization_dataset |
|
args: document |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 39.1107 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pegasus-large-finetuned-Pubmed |
|
|
|
This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the pub_med_summarization_dataset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7669 |
|
- Rouge1: 39.1107 |
|
- Rouge2: 15.4127 |
|
- Rougel: 24.3729 |
|
- Rougelsum: 35.1236 |
|
- Gen Len: 226.594 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 2.065 | 1.0 | 1000 | 1.8262 | 37.1986 | 14.3685 | 23.7153 | 33.0713 | 218.902 | |
|
| 1.9552 | 2.0 | 2000 | 1.7933 | 38.0663 | 14.7813 | 23.8412 | 33.9574 | 217.488 | |
|
| 1.8983 | 3.0 | 3000 | 1.7768 | 38.3975 | 15.0983 | 24.0247 | 34.314 | 222.32 | |
|
| 1.882 | 4.0 | 4000 | 1.7687 | 39.1311 | 15.4167 | 24.2978 | 35.078 | 222.564 | |
|
| 1.8456 | 5.0 | 5000 | 1.7669 | 39.1107 | 15.4127 | 24.3729 | 35.1236 | 226.594 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0 |
|
- Pytorch 1.9.1 |
|
- Datasets 1.18.4 |
|
- Tokenizers 0.11.6 |
|
|