|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- pub_med_summarization_dataset |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: pegasus-cnn_dailymail-finetuned-pubmed |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: pub_med_summarization_dataset |
|
type: pub_med_summarization_dataset |
|
args: document |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 37.2569 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pegasus-cnn_dailymail-finetuned-pubmed |
|
|
|
This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the pub_med_summarization_dataset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8050 |
|
- Rouge1: 37.2569 |
|
- Rouge2: 15.8205 |
|
- Rougel: 24.1969 |
|
- Rougelsum: 34.0331 |
|
- Gen Len: 125.892 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 2.2449 | 1.0 | 1000 | 1.8942 | 36.4494 | 14.9948 | 23.8279 | 33.3081 | 124.482 | |
|
| 2.0803 | 2.0 | 2000 | 1.8440 | 36.998 | 15.4992 | 24.091 | 33.6614 | 125.678 | |
|
| 2.0166 | 3.0 | 3000 | 1.8176 | 37.4703 | 16.0358 | 24.5735 | 34.1789 | 125.094 | |
|
| 1.9911 | 4.0 | 4000 | 1.8055 | 37.1338 | 15.7921 | 24.1412 | 33.8293 | 125.874 | |
|
| 1.9419 | 5.0 | 5000 | 1.8050 | 37.2569 | 15.8205 | 24.1969 | 34.0331 | 125.892 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0 |
|
- Pytorch 1.9.1 |
|
- Datasets 1.18.4 |
|
- Tokenizers 0.11.6 |
|
|