Kevincp560's picture
update model card README.md
28458c3
|
raw
history blame
2.36 kB
---
license: mit
tags:
- generated_from_trainer
datasets:
- pub_med_summarization_dataset
metrics:
- rouge
model-index:
- name: bart-large-cnn-finetuned-pubmed
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: pub_med_summarization_dataset
type: pub_med_summarization_dataset
args: document
metrics:
- name: Rouge1
type: rouge
value: 40.4866
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-cnn-finetuned-pubmed
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the pub_med_summarization_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8416
- Rouge1: 40.4866
- Rouge2: 16.7472
- Rougel: 24.9831
- Rougelsum: 36.4002
- Gen Len: 142.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| 1.932 | 1.0 | 4000 | 1.8110 | 38.1151 | 15.2255 | 23.4286 | 34.2521 | 141.8905 |
| 1.7001 | 2.0 | 8000 | 1.7790 | 39.8217 | 16.3042 | 24.649 | 35.831 | 142.0 |
| 1.5 | 3.0 | 12000 | 1.7971 | 40.6108 | 17.0446 | 25.1977 | 36.5556 | 141.9865 |
| 1.3316 | 4.0 | 16000 | 1.8106 | 40.0466 | 16.4851 | 24.7094 | 36.0998 | 141.9335 |
| 1.1996 | 5.0 | 20000 | 1.8416 | 40.4866 | 16.7472 | 24.9831 | 36.4002 | 142.0 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6