|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- pub_med_summarization_dataset |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-large-cnn-finetuned-pubmed |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: pub_med_summarization_dataset |
|
type: pub_med_summarization_dataset |
|
args: document |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 40.4866 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-large-cnn-finetuned-pubmed |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the pub_med_summarization_dataset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8416 |
|
- Rouge1: 40.4866 |
|
- Rouge2: 16.7472 |
|
- Rougel: 24.9831 |
|
- Rougelsum: 36.4002 |
|
- Gen Len: 142.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| |
|
| 1.932 | 1.0 | 4000 | 1.8110 | 38.1151 | 15.2255 | 23.4286 | 34.2521 | 141.8905 | |
|
| 1.7001 | 2.0 | 8000 | 1.7790 | 39.8217 | 16.3042 | 24.649 | 35.831 | 142.0 | |
|
| 1.5 | 3.0 | 12000 | 1.7971 | 40.6108 | 17.0446 | 25.1977 | 36.5556 | 141.9865 | |
|
| 1.3316 | 4.0 | 16000 | 1.8106 | 40.0466 | 16.4851 | 24.7094 | 36.0998 | 141.9335 | |
|
| 1.1996 | 5.0 | 20000 | 1.8416 | 40.4866 | 16.7472 | 24.9831 | 36.4002 | 142.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.2 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.11.6 |
|
|