Kevincp560's picture
update model card README.md
782b3e0
|
raw
history blame
2.32 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - pub_med_summarization_dataset
metrics:
  - rouge
model-index:
  - name: bart-base-finetuned-pubmed
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: pub_med_summarization_dataset
          type: pub_med_summarization_dataset
          args: document
        metrics:
          - name: Rouge1
            type: rouge
            value: 9.3963

bart-base-finetuned-pubmed

This model is a fine-tuned version of facebook/bart-base on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0277
  • Rouge1: 9.3963
  • Rouge2: 4.0473
  • Rougel: 8.4526
  • Rougelsum: 8.9659
  • Gen Len: 20.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.3706 1.0 4000 2.1245 9.1644 3.8264 8.2223 8.718 20.0
2.2246 2.0 8000 2.0811 9.023 3.7716 8.1453 8.5998 20.0
2.1034 3.0 12000 2.0469 9.4412 4.0783 8.4949 8.9977 20.0
2.0137 4.0 16000 2.0390 9.2261 3.9307 8.3154 8.7937 20.0
1.9288 5.0 20000 2.0277 9.3963 4.0473 8.4526 8.9659 20.0

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.6