Keiser41's picture
Update pintar.py
fd5f9f3
raw
history blame
4.5 kB
import os
import numpy as np
from skimage import color, io
import torch
import torch.nn.functional as F
from PIL import Image
from models import ColorEncoder, ColorUNet
from extractor.manga_panel_extractor import PanelExtractor
import argparse
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def mkdirs(path):
if not os.path.exists(path):
os.makedirs(path)
def Lab2RGB_out(img_lab):
img_lab = img_lab.detach().cpu()
img_l = img_lab[:,:1,:,:]
img_ab = img_lab[:,1:,:,:]
img_l = img_l + 50
pred_lab = torch.cat((img_l, img_ab), 1)[0,...].numpy()
out = (np.clip(color.lab2rgb(pred_lab.transpose(1, 2, 0)), 0, 1)* 255).astype("uint8")
return out
def RGB2Lab(inputs):
return color.rgb2lab(inputs)
def Normalize(inputs):
l = inputs[:, :, 0:1]
ab = inputs[:, :, 1:3]
l = l - 50
lab = np.concatenate((l, ab), 2)
return lab.astype('float32')
def numpy2tensor(inputs):
out = torch.from_numpy(inputs.transpose(2,0,1))
return out
def tensor2numpy(inputs):
out = inputs[0,...].detach().cpu().numpy().transpose(1,2,0)
return out
def preprocessing(inputs):
img_lab = Normalize(RGB2Lab(inputs))
img = np.array(inputs, 'float32')
img = numpy2tensor(img)
img_lab = numpy2tensor(img_lab)
return img.unsqueeze(0), img_lab.unsqueeze(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Colorize manga images based on a single reference image.")
parser.add_argument("-i", "--input_folder", type=str, required=True, help="Path to the input folder containing images to be colorized.")
parser.add_argument("-r", "--reference_image", type=str, required=True, help="Path to the reference image.")
parser.add_argument("-c", "--ckpt", type=str, required=True, help="Path to the model checkpoint file.")
parser.add_argument("-o", "--output_folder", type=str, required=True, help="Path to the output folder to save colorized images.")
args = parser.parse_args()
device = "cuda"
input_folder = args.input_folder
reference_image_path = args.reference_image
ckpt_path = args.ckpt
output_folder = args.output_folder
imgsize = 256
ckpt = torch.load(ckpt_path, map_location=lambda storage, loc: storage)
colorEncoder = ColorEncoder().to(device)
colorEncoder.load_state_dict(ckpt["colorEncoder"])
colorEncoder.eval()
colorUNet = ColorUNet().to(device)
colorUNet.load_state_dict(ckpt["colorUNet"])
colorUNet.eval()
# Recorre recursivamente el directorio de entrada y procesa cada imagen encontrada
for root, dirs, files in os.walk(input_folder):
for file in files:
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp')):
input_image_path = os.path.join(root, file)
img_name = os.path.splitext(os.path.basename(input_image_path))[0]
img1 = Image.open(input_image_path).convert("RGB")
width, height = img1.size
img1, img1_lab = preprocessing(img1)
img2, img2_lab = preprocessing(Image.open(reference_image_path).convert("RGB"))
img1 = img1.to(device)
img1_lab = img1_lab.to(device)
img2 = img2.to(device)
img2_lab = img2_lab.to(device)
with torch.no_grad():
img2_resize = F.interpolate(img2 / 255., size=(imgsize, imgsize), mode='bilinear', recompute_scale_factor=False, align_corners=False)
img1_L_resize = F.interpolate(img1_lab[:,:1,:,:] / 50., size=(imgsize, imgsize), mode='bilinear', recompute_scale_factor=False, align_corners=False)
color_vector = colorEncoder(img2_resize)
fake_ab = colorUNet((img1_L_resize, color_vector))
fake_ab = F.interpolate(fake_ab*110, size=(height, width), mode='bilinear', recompute_scale_factor=False, align_corners=False)
fake_img = torch.cat((img1_lab[:,:1,:,:], fake_ab), 1)
fake_img = Lab2RGB_out(fake_img)
out_subfolder = os.path.join(output_folder, os.path.relpath(root, input_folder))
out_folder = os.path.join(out_subfolder, 'color')
mkdirs(out_folder)
out_img_path = os.path.join(out_folder, f'{img_name}_color.png')
io.imsave(out_img_path, fake_img)
print(f'Colored images have been saved to {output_folder}.')