Model save
Browse files- README.md +127 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/swin-tiny-patch4-window7-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: swin-tiny-patch4-window7-224-PE
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.5833333333333334
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# swin-tiny-patch4-window7-224-PE
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.6756
|
36 |
+
- Accuracy: 0.5833
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.0025
|
56 |
+
- train_batch_size: 128
|
57 |
+
- eval_batch_size: 128
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 512
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 50
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 0.5675 | 0.99 | 20 | 0.5504 | 0.7463 |
|
71 |
+
| 0.7158 | 1.98 | 40 | 0.9070 | 0.5944 |
|
72 |
+
| 0.6498 | 2.96 | 60 | 0.6501 | 0.6037 |
|
73 |
+
| 0.6405 | 4.0 | 81 | 0.5655 | 0.7389 |
|
74 |
+
| 0.7003 | 4.99 | 101 | 0.6786 | 0.5907 |
|
75 |
+
| 0.6857 | 5.98 | 121 | 0.6820 | 0.5370 |
|
76 |
+
| 0.6933 | 6.96 | 141 | 0.6819 | 0.5926 |
|
77 |
+
| 0.6795 | 8.0 | 162 | 0.6783 | 0.5481 |
|
78 |
+
| 0.6872 | 8.99 | 182 | 0.6907 | 0.5370 |
|
79 |
+
| 0.6942 | 9.98 | 202 | 0.6922 | 0.5407 |
|
80 |
+
| 0.6945 | 10.96 | 222 | 0.6935 | 0.4630 |
|
81 |
+
| 0.6936 | 12.0 | 243 | 0.6974 | 0.4630 |
|
82 |
+
| 0.6935 | 12.99 | 263 | 0.6907 | 0.5407 |
|
83 |
+
| 0.6925 | 13.98 | 283 | 0.6945 | 0.4241 |
|
84 |
+
| 0.6927 | 14.96 | 303 | 0.6952 | 0.4630 |
|
85 |
+
| 0.6921 | 16.0 | 324 | 0.6901 | 0.5463 |
|
86 |
+
| 0.6937 | 16.99 | 344 | 0.6935 | 0.4407 |
|
87 |
+
| 0.6933 | 17.98 | 364 | 0.6922 | 0.5537 |
|
88 |
+
| 0.6929 | 18.96 | 384 | 0.6971 | 0.4630 |
|
89 |
+
| 0.6919 | 20.0 | 405 | 0.6901 | 0.5630 |
|
90 |
+
| 0.6903 | 20.99 | 425 | 0.6850 | 0.5722 |
|
91 |
+
| 0.6892 | 21.98 | 445 | 0.6876 | 0.5611 |
|
92 |
+
| 0.6846 | 22.96 | 465 | 0.6871 | 0.5463 |
|
93 |
+
| 0.6841 | 24.0 | 486 | 0.6742 | 0.5685 |
|
94 |
+
| 0.682 | 24.99 | 506 | 0.6776 | 0.5741 |
|
95 |
+
| 0.6796 | 25.98 | 526 | 0.6850 | 0.5407 |
|
96 |
+
| 0.6849 | 26.96 | 546 | 0.6722 | 0.5907 |
|
97 |
+
| 0.6855 | 28.0 | 567 | 0.6818 | 0.5648 |
|
98 |
+
| 0.6903 | 28.99 | 587 | 0.7024 | 0.4685 |
|
99 |
+
| 0.6845 | 29.98 | 607 | 0.6781 | 0.5630 |
|
100 |
+
| 0.6806 | 30.96 | 627 | 0.6771 | 0.5778 |
|
101 |
+
| 0.6808 | 32.0 | 648 | 0.6718 | 0.5833 |
|
102 |
+
| 0.6811 | 32.99 | 668 | 0.6715 | 0.5833 |
|
103 |
+
| 0.6814 | 33.98 | 688 | 0.6641 | 0.6370 |
|
104 |
+
| 0.6848 | 34.96 | 708 | 0.6736 | 0.6111 |
|
105 |
+
| 0.6848 | 36.0 | 729 | 0.6694 | 0.6259 |
|
106 |
+
| 0.6848 | 36.99 | 749 | 0.6757 | 0.5907 |
|
107 |
+
| 0.6865 | 37.98 | 769 | 0.6763 | 0.5667 |
|
108 |
+
| 0.6876 | 38.96 | 789 | 0.6812 | 0.5889 |
|
109 |
+
| 0.6858 | 40.0 | 810 | 0.6763 | 0.5926 |
|
110 |
+
| 0.6863 | 40.99 | 830 | 0.6743 | 0.5981 |
|
111 |
+
| 0.6838 | 41.98 | 850 | 0.6740 | 0.5796 |
|
112 |
+
| 0.6833 | 42.96 | 870 | 0.6770 | 0.5611 |
|
113 |
+
| 0.6883 | 44.0 | 891 | 0.6733 | 0.6037 |
|
114 |
+
| 0.684 | 44.99 | 911 | 0.6730 | 0.6019 |
|
115 |
+
| 0.6869 | 45.98 | 931 | 0.6731 | 0.6130 |
|
116 |
+
| 0.6861 | 46.96 | 951 | 0.6752 | 0.5704 |
|
117 |
+
| 0.686 | 48.0 | 972 | 0.6761 | 0.5704 |
|
118 |
+
| 0.683 | 48.99 | 992 | 0.6759 | 0.5722 |
|
119 |
+
| 0.6847 | 49.38 | 1000 | 0.6756 | 0.5833 |
|
120 |
+
|
121 |
+
|
122 |
+
### Framework versions
|
123 |
+
|
124 |
+
- Transformers 4.35.2
|
125 |
+
- Pytorch 2.0.1+cu117
|
126 |
+
- Datasets 2.15.0
|
127 |
+
- Tokenizers 0.15.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 110342832
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8932a6abcb50716c12d55010754d5095ee3636c426dfb33735d094b0a4e94410
|
3 |
size 110342832
|