KasuleTrevor's picture
End of training
ac71ad4 verified
|
raw
history blame
7.7 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-xlsr-ln-50hr-v1
    results: []

wav2vec2-xlsr-ln-50hr-v1

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5500
  • Model Preparation Time: 0.0092
  • Wer: 0.2237
  • Cer: 0.0739

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 120
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
4.1139 0.9986 362 0.5868 0.0092 0.4335 0.1216
0.3001 2.0 725 0.3474 0.0092 0.2614 0.0792
0.2033 2.9986 1087 0.3256 0.0092 0.2023 0.0670
0.1629 4.0 1450 0.3155 0.0092 0.2089 0.0641
0.1366 4.9986 1812 0.2904 0.0092 0.1899 0.0577
0.1182 6.0 2175 0.2895 0.0092 0.1864 0.0572
0.1064 6.9986 2537 0.2815 0.0092 0.1671 0.0535
0.0945 8.0 2900 0.3037 0.0092 0.1706 0.0559
0.0845 8.9986 3262 0.3142 0.0092 0.1743 0.0581
0.0779 10.0 3625 0.3031 0.0092 0.1758 0.0572
0.0754 10.9986 3987 0.3111 0.0092 0.1704 0.0568
0.0687 12.0 4350 0.3130 0.0092 0.1664 0.0539
0.0582 12.9986 4712 0.3364 0.0092 0.1619 0.0526
0.0552 14.0 5075 0.3039 0.0092 0.1568 0.0527
0.054 14.9986 5437 0.3176 0.0092 0.1561 0.0507
0.0453 16.0 5800 0.3283 0.0092 0.1550 0.0519
0.046 16.9986 6162 0.3320 0.0092 0.1556 0.0504
0.0443 18.0 6525 0.3443 0.0092 0.1560 0.0510
0.0441 18.9986 6887 0.3392 0.0092 0.1549 0.0518
0.0375 20.0 7250 0.3526 0.0092 0.1565 0.0529
0.0371 20.9986 7612 0.3552 0.0092 0.1574 0.0541
0.0412 22.0 7975 0.3313 0.0092 0.1762 0.0565
0.041 22.9986 8337 0.3649 0.0092 0.1695 0.0572
0.0377 24.0 8700 0.3603 0.0092 0.1578 0.0532
0.0332 24.9986 9062 0.3496 0.0092 0.1513 0.0509
0.032 26.0 9425 0.3436 0.0092 0.1504 0.0517
0.0314 26.9986 9787 0.3573 0.0092 0.1545 0.0523
0.0281 28.0 10150 0.3644 0.0092 0.1504 0.0504
0.0268 28.9986 10512 0.3628 0.0092 0.1521 0.0506
0.0304 30.0 10875 0.3692 0.0092 0.1512 0.0510
0.0296 30.9986 11237 0.3573 0.0092 0.1493 0.0505
0.023 32.0 11600 0.3767 0.0092 0.1562 0.0516
0.0292 32.9986 11962 0.3462 0.0092 0.1496 0.0492
0.0261 34.0 12325 0.3927 0.0092 0.1500 0.0490
0.0248 34.9986 12687 0.3771 0.0092 0.1438 0.0492
0.0238 36.0 13050 0.3763 0.0092 0.1457 0.0474
0.0223 36.9986 13412 0.3627 0.0092 0.1523 0.0510
0.0225 38.0 13775 0.3825 0.0092 0.1468 0.0494
0.022 38.9986 14137 0.3830 0.0092 0.1614 0.0547
0.0226 40.0 14500 0.3851 0.0092 0.1488 0.0509
0.0225 40.9986 14862 0.4072 0.0092 0.1592 0.0530
0.0197 42.0 15225 0.4024 0.0092 0.1460 0.0502
0.0205 42.9986 15587 0.4099 0.0092 0.1491 0.0510
0.0195 44.0 15950 0.3746 0.0092 0.1449 0.0501
0.0187 44.9986 16312 0.3902 0.0092 0.1417 0.0487
0.0196 46.0 16675 0.3923 0.0092 0.1453 0.0497
0.0177 46.9986 17037 0.4107 0.0092 0.1458 0.0490
0.0175 48.0 17400 0.4043 0.0092 0.1478 0.0503
0.0178 48.9986 17762 0.4009 0.0092 0.1450 0.0514
0.0161 50.0 18125 0.4172 0.0092 0.1374 0.0472
0.015 50.9986 18487 0.4006 0.0092 0.1342 0.0463
0.015 52.0 18850 0.3975 0.0092 0.1399 0.0492
0.0173 52.9986 19212 0.3690 0.0092 0.1399 0.0493
0.0156 54.0 19575 0.4321 0.0092 0.1439 0.0504
0.0151 54.9986 19937 0.4353 0.0092 0.1443 0.0508
0.0151 56.0 20300 0.3784 0.0092 0.1394 0.0488
0.015 56.9986 20662 0.4225 0.0092 0.1415 0.0499
0.0128 58.0 21025 0.4172 0.0092 0.1421 0.0486
0.0124 58.9986 21387 0.3899 0.0092 0.1400 0.0479
0.0109 60.0 21750 0.4265 0.0092 0.1364 0.0468
0.0109 60.9986 22112 0.4143 0.0092 0.1400 0.0486
0.0118 62.0 22475 0.4204 0.0092 0.1446 0.0495
0.0125 62.9986 22837 0.4020 0.0092 0.1367 0.0472

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.1.0+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1