karim_codellama / README.md
Karimsliti's picture
End of training
067a464 verified
|
raw
history blame
3.13 kB
metadata
license: llama2
base_model: codellama/CodeLlama-7b-hf
tags:
  - generated_from_trainer
model-index:
  - name: karim_codellama
    results: []
library_name: peft

Visualize in Weights & Biases

karim_codellama

This model is a fine-tuned version of codellama/CodeLlama-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1887

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • _load_in_8bit: True
  • _load_in_4bit: False
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: fp4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float32
  • bnb_4bit_quant_storage: uint8
  • load_in_4bit: False
  • load_in_8bit: True

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 400
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.146 0.0787 20 1.2504
0.8176 0.1573 40 0.6454
0.6291 0.2360 60 0.4881
0.3068 0.3147 80 0.3589
0.5266 0.3933 100 0.4066
0.302 0.4720 120 0.2728
0.1989 0.5506 140 0.2604
0.3157 0.6293 160 0.2502
0.1768 0.7080 180 0.2285
0.4553 0.7866 200 0.2575
0.2183 0.8653 220 0.2152
0.1815 0.9440 240 0.2148
0.2704 1.0226 260 0.2142
0.1662 1.1013 280 0.2001
0.3306 1.1799 300 0.2065
0.2161 1.2586 320 0.1967
0.1429 1.3373 340 0.1925
0.2892 1.4159 360 0.1927
0.1459 1.4946 380 0.1894
0.3078 1.5733 400 0.1887

Framework versions

  • PEFT 0.6.0.dev0
  • Transformers 4.41.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.19.0
  • Tokenizers 0.19.1