|
|
|
""" |
|
finetune-gpt-j-6B-8bit.ipynb |
|
https://colab.research.google.com/drive/1ft6wQU0BhqG5PRlwgaZJv2VukKKjU4Es |
|
### Fine-tuning 6-Billion GPT-J in colab with LoRA and 8-bit compression |
|
(https://huggingface.co/EleutherAI/gpt-j-6B) with limited memory. A |
|
https://huggingface.co/hivemind/gpt-j-6B-8bit) |
|
This notebook is a proof of concept for fine-tuning |
|
[GPT-J-6B](https://huggingface.co/EleutherAI/gpt-j-6B) with limited memory. |
|
A detailed explanation of how it works can be found in [this model card] |
|
(https://huggingface.co/hivemind/gpt-j-6B-8bit). |
|
""" |
|
|
|
from loguru import logger |
|
import transformers |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.cuda.amp import custom_fwd, custom_bwd |
|
from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise |
|
from tqdm.auto import tqdm |
|
from datasets import load_dataset |
|
from bitsandbytes.optim import Adam8bit |
|
import time, os |
|
|
|
|
|
""" |
|
We convert EleutherAI's GPT-J-6B model to 8 bits using facebook's [bitsandbytes](https://github.com/facebookresearch/bitsandbytes) library. |
|
This reduces the model's size from 20Gb down to just 6Gb. |
|
Note that we don't convert linear layer biases to 8 bit as they take up less that 1% of the model's weight anyway. |
|
""" |
|
|
|
class FrozenBNBLinear(nn.Module): |
|
def __init__(self, weight, absmax, code, bias=None): |
|
assert isinstance(bias, nn.Parameter) or bias is None |
|
super().__init__() |
|
self.out_features, self.in_features = weight.shape |
|
self.register_buffer("weight", weight.requires_grad_(False)) |
|
self.register_buffer("absmax", absmax.requires_grad_(False)) |
|
self.register_buffer("code", code.requires_grad_(False)) |
|
self.adapter = None |
|
self.bias = bias |
|
|
|
def forward(self, input): |
|
output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias) |
|
if self.adapter: |
|
output = output + self.adapter(input) |
|
return output |
|
|
|
@classmethod |
|
def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear": |
|
weights_int8, state = quantize_blockise_lowmemory(linear.weight) |
|
return cls(weights_int8, *state, linear.bias) |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__}({self.in_features}, {self.out_features})" |
|
|
|
|
|
|
|
class DequantizeAndLinear(torch.autograd.Function): |
|
@staticmethod |
|
@custom_fwd |
|
def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor, |
|
absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor): |
|
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code) |
|
ctx.save_for_backward(input, weights_quantized, absmax, code) |
|
ctx._has_bias = bias is not None |
|
return F.linear(input, weights_deq, bias) |
|
|
|
@staticmethod |
|
@custom_bwd |
|
def backward(ctx, grad_output: torch.Tensor): |
|
assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3] |
|
input, weights_quantized, absmax, code = ctx.saved_tensors |
|
|
|
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code) |
|
grad_input = grad_output @ weights_deq |
|
grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None |
|
return grad_input, None, None, None, grad_bias |
|
|
|
|
|
class FrozenBNBEmbedding(nn.Module): |
|
def __init__(self, weight, absmax, code): |
|
super().__init__() |
|
self.num_embeddings, self.embedding_dim = weight.shape |
|
self.register_buffer("weight", weight.requires_grad_(False)) |
|
self.register_buffer("absmax", absmax.requires_grad_(False)) |
|
self.register_buffer("code", code.requires_grad_(False)) |
|
self.adapter = None |
|
|
|
def forward(self, input, **kwargs): |
|
with torch.no_grad(): |
|
|
|
weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code) |
|
output = F.embedding(input, weight_deq, **kwargs) |
|
if self.adapter: |
|
output += self.adapter(input) |
|
return output |
|
|
|
@classmethod |
|
def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding": |
|
weights_int8, state = quantize_blockise_lowmemory(embedding.weight) |
|
return cls(weights_int8, *state) |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})" |
|
|
|
def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20): |
|
assert chunk_size % 4096 == 0 |
|
code = None |
|
chunks = [] |
|
absmaxes = [] |
|
flat_tensor = matrix.view(-1) |
|
for i in range((matrix.numel() - 1) // chunk_size + 1): |
|
input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone() |
|
quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code) |
|
chunks.append(quantized_chunk) |
|
absmaxes.append(absmax_chunk) |
|
|
|
matrix_i8 = torch.cat(chunks).reshape_as(matrix) |
|
absmax = torch.cat(absmaxes) |
|
return matrix_i8, (absmax, code) |
|
|
|
|
|
def convert_to_int8(model): |
|
"""Convert linear and embedding modules to 8-bit with optional adapters""" |
|
for module in list(model.modules()): |
|
for name, child in module.named_children(): |
|
if isinstance(child, nn.Linear): |
|
print(name, child) |
|
setattr( |
|
module, |
|
name, |
|
FrozenBNBLinear( |
|
weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8), |
|
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1), |
|
code=torch.zeros(256), |
|
bias=child.bias, |
|
), |
|
) |
|
elif isinstance(child, nn.Embedding): |
|
setattr( |
|
module, |
|
name, |
|
FrozenBNBEmbedding( |
|
weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8), |
|
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1), |
|
code=torch.zeros(256), |
|
) |
|
) |
|
|
|
class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
convert_to_int8(self.attn) |
|
convert_to_int8(self.mlp) |
|
|
|
|
|
class GPTJModel(transformers.models.gptj.modeling_gptj.GPTJModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
convert_to_int8(self) |
|
|
|
|
|
class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
convert_to_int8(self) |
|
|
|
|
|
transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock |
|
|
|
|
|
config = transformers.GPTJConfig.from_pretrained("EleutherAI/gpt-j-6B") |
|
tokenizer = transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gpt = GPTJForCausalLM.from_pretrained("./saved_models_gpt-j-6B-8bit/gpt-j-6B") |
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
gpt.to(device) |
|
|
|
|
|
prompt = tokenizer("A cat sat on a mat", return_tensors='pt') |
|
prompt = {key: value.to(device) for key, value in prompt.items()} |
|
out = gpt.generate(**prompt, min_length=128, max_length=128, do_sample=True) |
|
logger.info("Generated text: {}".format(tokenizer.decode(out[0]))) |
|
|
|
|
|
|
|
|
|
def add_adapters(model, adapter_dim=16): |
|
assert adapter_dim > 0 |
|
|
|
for module in model.modules(): |
|
if isinstance(module, FrozenBNBLinear): |
|
module.adapter = nn.Sequential( |
|
nn.Linear(module.in_features, adapter_dim, bias=False), |
|
nn.Linear(adapter_dim, module.out_features, bias=False), |
|
) |
|
nn.init.zeros_(module.adapter[1].weight) |
|
elif isinstance(module, FrozenBNBEmbedding): |
|
module.adapter = nn.Sequential( |
|
nn.Embedding(module.num_embeddings, adapter_dim), |
|
nn.Linear(adapter_dim, module.embedding_dim, bias=False), |
|
) |
|
nn.init.zeros_(module.adapter[1].weight) |
|
|
|
add_adapters(gpt) |
|
gpt.to(device) |
|
gpt.gradient_checkpointing_enable() |
|
|
|
|
|
data_files = {"train": "data.jsonl"} |
|
dataset = load_dataset('nomic-ai/gpt4all_prompt_generations_with_p3', data_files=data_files) |
|
prompt_response_separator = " response: " |
|
|
|
def concatenate_prompt_response(row): |
|
row["text"] = "prompt: " + row["prompt"] + prompt_response_separator + row["response"] |
|
return row |
|
|
|
dataset = dataset.map(concatenate_prompt_response, remove_columns=["prompt", "response"]) |
|
|
|
|
|
|
|
|
|
optimizer = Adam8bit(gpt.parameters(), lr=1e-5) |
|
|
|
|
|
start = time.time() |
|
|
|
|
|
with torch.cuda.amp.autocast(): |
|
for row in tqdm(dataset["train"]): |
|
if len(row["text"]) <= 1: |
|
continue |
|
batch = tokenizer(row["text"], truncation=True, max_length=128, return_tensors='pt') |
|
batch = {k: v.cuda() for k, v in batch.items()} |
|
out = gpt.forward(**batch,) |
|
loss = F.cross_entropy(out.logits[:, :-1, :].flatten(0, -2), batch['input_ids'][:, 1:].flatten(), |
|
reduction='mean') |
|
print(loss) |
|
loss.backward() |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
|
|
logger.info("Finished fine-tuning in {}".format(time.time() - start)) |
|
|
|
|
|
try: |
|
save_dir = "./finetuned_gpt-j-8_bit" |
|
os.makedirs(save_dir) |
|
gpt.save_pretrained(save_dir) |
|
except Exception as e: |
|
|
|
logger.info("Error saving model: {}".format(e)) |