nbouberbachene
commited on
Commit
•
cea17bf
1
Parent(s):
ff80ea6
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,44 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- ILSVRC/imagenet-1k
|
5 |
+
pipeline_tag: image-classification
|
6 |
+
---
|
7 |
+
|
8 |
+
# Introduction
|
9 |
+
|
10 |
+
This repository stores the model for Efficientnet-b0, compatible with Kalray's neural network API. </br>
|
11 |
+
Please see www.github.com/kalray/kann-models-zoo for details and proper usage. </br>
|
12 |
+
Please see https://huggingface.co/docs/transformers/main/en/model_doc/efficientnet for Efficientnet model description. </br>
|
13 |
+
|
14 |
+
# Contents
|
15 |
+
|
16 |
+
- ONNX: efficientNet-b0.onnx
|
17 |
+
|
18 |
+
# Lecture note reference
|
19 |
+
|
20 |
+
- EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, https://arxiv.org/pdf/1905.11946
|
21 |
+
|
22 |
+
# Repository or links references
|
23 |
+
|
24 |
+
- https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b0.html#torchvision.models.efficientnet_b0
|
25 |
+
|
26 |
+
BibTeX entry and citation info
|
27 |
+
```
|
28 |
+
@article{DBLP:journals/corr/abs-1905-11946,
|
29 |
+
author = {Mingxing Tan and
|
30 |
+
Quoc V. Le},
|
31 |
+
title = {EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks},
|
32 |
+
journal = {CoRR},
|
33 |
+
volume = {abs/1905.11946},
|
34 |
+
year = {2019},
|
35 |
+
url = {http://arxiv.org/abs/1905.11946},
|
36 |
+
eprinttype = {arXiv},
|
37 |
+
eprint = {1905.11946},
|
38 |
+
timestamp = {Mon, 03 Jun 2019 13:42:33 +0200},
|
39 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-1905-11946.bib},
|
40 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
41 |
+
}
|
42 |
+
```
|
43 |
+
|
44 |
+
Author: nbouberbachene@kalrayinc.com
|