|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
datasets: |
|
- kallantis/Greek-Humorous-Dataset |
|
language: |
|
- el |
|
pipeline_tag: text-classification |
|
--- |
|
# |
|
# |
|
# This model uses the Llama-3 model ("meta-llama/Meta-Llama-3-8B") fine-tuned with 4 bit quantization Parameter Efficient Fine Tuning - PEFT training, using LoRA and QLoRA adaptations for the task of Humor Recognition in Greek language. |
|
# |
|
|
|
|
|
|
|
## Model Details |
|
|
|
The model was pre-trained on Greek Humorous Dataset |
|
|
|
## PEFT Configs |
|
* Bits and bytes config for quantization - QLoRA |
|
* LoRA config for LoRA adaptation |
|
|
|
## Pre-processing details |
|
|
|
The text needs to be pre-processed by: |
|
* removing all greek diacritics and punctuations |
|
* converting all letters to lowercase |
|
|
|
## Load Pretrained Model |
|
pad_token needs to be handle since Llama-3 pre-training doesn't have eos_token |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("kallantis/Humor-Recognition-Greek-Llama-3", add_prefix_space=True) |
|
|
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained( |
|
"kallantis/Humor-Recognition-Greek-Llama-3", |
|
quantization_config=quantization_config, |
|
num_labels=2 |
|
) |
|
|
|
``` |