KalleV's picture
End of training
ea8a724
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- financial_phrasebank
metrics:
- f1
- accuracy
model-index:
- name: phrasebank-sentiment-analysis
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: financial_phrasebank
type: financial_phrasebank
config: sentences_50agree
split: train
args: sentences_50agree
metrics:
- name: F1
type: f1
value: 0.8479567842122465
- name: Accuracy
type: accuracy
value: 0.859697386519945
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phrasebank-sentiment-analysis
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the financial_phrasebank dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5570
- F1: 0.8480
- Accuracy: 0.8597
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| 0.6113 | 0.94 | 100 | 0.4181 | 0.8142 | 0.8363 |
| 0.2672 | 1.89 | 200 | 0.3633 | 0.8413 | 0.8535 |
| 0.1219 | 2.83 | 300 | 0.4864 | 0.8339 | 0.8542 |
| 0.062 | 3.77 | 400 | 0.5570 | 0.8480 | 0.8597 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1