metadata
tags:
- spacy
- token-classification
language:
- en
license: cc-by-sa-3.0
model-index:
- name: en_Radiology_ner_bc5cdr_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8795194126
- name: NER Recall
type: recall
value: 0.8352879028
- name: NER F Score
type: f_score
value: 0.8568332069
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0
Spacy Models for Biomedical Text.
Feature | Description |
---|---|
Name | en_Radiology_ner_bc5cdr_md |
Version | 0.5.1 |
spaCy | >=3.4.1,<3.5.0 |
Default Pipeline | tok2vec , tagger , attribute_ruler , lemmatizer , parser , ner |
Components | tok2vec , tagger , attribute_ruler , lemmatizer , parser , ner |
Vectors | 4087446 keys, 50000 unique vectors (200 dimensions) |
Sources | BC5CDR OntoNotes 5 Common Crawl GENIA 1.0 |
License | CC BY-SA 3.0 |
Author | Allen Institute for Artificial Intelligence |
Label Scheme
View label scheme (102 labels for 3 components)
Component | Labels |
---|---|
tagger |
$ , '' , , , -LRB- , -RRB- , . , : , ADD , AFX , CC , CD , DT , EX , FW , HYPH , IN , JJ , JJR , JJS , LS , MD , NFP , NN , NNP , NNPS , NNS , PDT , POS , PRP , PRP$ , RB , RBR , RBS , RP , SYM , TO , UH , VB , VBD , VBG , VBN , VBP , VBZ , WDT , WP , WP$ , WRB , XX , ```` |
parser |
ROOT , acl , acl:relcl , acomp , advcl , advmod , amod , amod@nmod , appos , attr , aux , auxpass , case , cc , cc:preconj , ccomp , compound , compound:prt , conj , cop , csubj , dative , dep , det , det:predet , dobj , expl , intj , mark , meta , mwe , neg , nmod , nmod:npmod , nmod:poss , nmod:tmod , nsubj , nsubjpass , nummod , parataxis , pcomp , pobj , preconj , predet , prep , punct , quantmod , xcomp |
ner |
ABST_RECOVER , CHEMICAL , DISEASE , DX , EXIST_WORSEN |
Accuracy
Type | Score |
---|---|
TAG_ACC |
0.00 |
LEMMA_ACC |
0.00 |
DEP_UAS |
0.00 |
DEP_LAS |
0.00 |
DEP_LAS_PER_TYPE |
0.00 |
SENTS_P |
0.00 |
SENTS_R |
0.00 |
SENTS_F |
0.00 |
ENTS_F |
85.68 |
ENTS_P |
87.95 |
ENTS_R |
83.53 |
NER_LOSS |
201857.49 |