yangdonghun3
commited on
Commit
โข
60d7ffe
1
Parent(s):
6196a7d
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,110 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
###
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
###
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
language: ko
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
license: llama3.1
|
5 |
---
|
6 |
|
7 |
+
### 1. Model Description
|
8 |
+
- KONI (KISTI Open Natural Intelligence) is a specialized large language model (LLM) developed by the Korea Institute of Science and Technology Information (KISTI). This model is specifically designed for science and technology, making it highly effective for tasks in these fields.
|
9 |
+
|
10 |
+
### 2. Key Features
|
11 |
+
- **Specialized in Science and Technology:** The model is explicitly trained on a vast and specialized corpus of scientific and technological data.
|
12 |
+
- **Enhanced Performance:** This version of KONI shows significantly improved performance compared to its initial release in December, 2023.
|
13 |
+
- **Base Model:** The base model for KONI-Llama3.1-70B-Instruct is Meta-Llama-3.1-70B-Instruct.
|
14 |
+
- **Alignment:** SFT (Supervised Fine-Tuning) and DPO (Direct Preference Optimization) are applied
|
15 |
+
|
16 |
+
### 3. Data
|
17 |
+
- Approximately 11k SFT data and 7k DPO data are used.
|
18 |
+
- **SFT Data:** The SFT data includes both internally generated data and publicly available data on Hugging Face, translated into Korean where necessary.
|
19 |
+
- **DPO Data:** The DPO data consists of translated and curated data from argilla/dpo-mix-7k.
|
20 |
+
|
21 |
+
### 4. Benchmark Results
|
22 |
+
The performances were evaluated using the [LogicKor](https://github.com/instructkr/LogicKor) benchmark dataset as follows:
|
23 |
+
Will be updated soon
|
24 |
+
<!--
|
25 |
+
| Metric | Score |
|
26 |
+
|:--------------:|:-----:|
|
27 |
+
| Reasoning | 8.57 |
|
28 |
+
| Math | 8.93 |
|
29 |
+
| Writing | 9.43 |
|
30 |
+
| Coding | 8.93 |
|
31 |
+
| Comprehension | 8.93 |
|
32 |
+
| Grammar | 8.64 |
|
33 |
+
| Single-turn | 8.81 |
|
34 |
+
| Multi-turn | 9.00 |
|
35 |
+
| **Overall** | **8.91** |
|
36 |
+
-->
|
37 |
+
### 5. How to use the model
|
38 |
+
```python
|
39 |
+
import transformers
|
40 |
+
import torch
|
41 |
+
|
42 |
+
model_id = "KISTI-KONI/KONI-Llama3.1-70B-Instruct-preview"
|
43 |
+
|
44 |
+
pipeline = transformers.pipeline(
|
45 |
+
"text-generation",
|
46 |
+
model=model_id,
|
47 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
48 |
+
device_map="auto",
|
49 |
+
)
|
50 |
+
|
51 |
+
pipeline.model.eval()
|
52 |
+
|
53 |
+
instruction = "์๋
? ๋๋ ๋๊ตฌ์ผ?"
|
54 |
+
|
55 |
+
messages = [
|
56 |
+
{"role": "user", "content": f"{instruction}"}
|
57 |
+
]
|
58 |
+
|
59 |
+
prompt = pipeline.tokenizer.apply_chat_template(
|
60 |
+
messages,
|
61 |
+
tokenize=False,
|
62 |
+
add_generation_prompt=True
|
63 |
+
)
|
64 |
+
|
65 |
+
terminators = [
|
66 |
+
pipeline.tokenizer.eos_token_id,
|
67 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
68 |
+
]
|
69 |
+
|
70 |
+
outputs = pipeline(
|
71 |
+
prompt,
|
72 |
+
max_new_tokens=2048,
|
73 |
+
eos_token_id=terminators,
|
74 |
+
do_sample=True,
|
75 |
+
temperature=0.7,
|
76 |
+
top_p=0.9
|
77 |
+
)
|
78 |
+
|
79 |
+
print(outputs[0]["generated_text"][len(prompt):])
|
80 |
+
```
|
81 |
+
```
|
82 |
+
์๋
ํ์ธ์! ์ ๋ KISTI์ KONI์
๋๋ค. ๊ณผํ๊ธฐ์ ๋ฐ์ดํฐ๋ฅผ ์ ๋ฌธ์ผ๋ก ์ฒ๋ฆฌํ๋ฉฐ, ์ฌ๋ฌ๋ถ์ ์ฐ๊ตฌ์ ์ง๋ฌธ์ ์ต์ ์ ๋คํด ๋์์ ๋๋ฆฌ๊ฒ ์ต๋๋ค. ๋ฌด์์ ๋์๋๋ฆด๊น์?
|
83 |
+
```
|
84 |
+
|
85 |
+
### 6. Citation
|
86 |
+
**Language Model**
|
87 |
+
```text
|
88 |
+
@article{KISTI-KONI/KONI-Llama3.1-70B-Instruct-preview,
|
89 |
+
title={KISTI-KONI/KONI-Llama3.1-70B-Instruct-preview},
|
90 |
+
author={KISTI},
|
91 |
+
year={2024},
|
92 |
+
url={https://huggingface.co/KISTI-KONI/KONI-Llama3.1-70B-Instruct-preview}
|
93 |
+
}
|
94 |
+
```
|
95 |
+
|
96 |
+
### 7. Contributors
|
97 |
+
- KISTI, Large-scale AI Research Group
|
98 |
+
|
99 |
+
### 8. Special Thanks
|
100 |
+
- [@beomi](https://huggingface.co/beomi)
|
101 |
+
- [@kuotient](https://huggingface.co/kuotient)
|
102 |
+
- KyungTae Lim
|
103 |
+
|
104 |
+
### 8. Acknowledgement
|
105 |
+
- This research was supported by Korea Institute of Science and Technology Information(KISTI).
|
106 |
+
- This work was supported by the National Supercomputing Center with supercomputing resources including technical support (KISTI).
|
107 |
+
|
108 |
+
### 9. References
|
109 |
+
- https://huggingface.co/meta-llama/Meta-Llama-3.1-70B
|
110 |
+
- https://huggingface.co/meta-llama/meta-llama/Meta-Llama-3.1-70B-Instruct
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|