|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-multilingual-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert_multi-uncased-finetuned-pos-tr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_multi-uncased-finetuned-pos-tr |
|
|
|
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3933 |
|
- Precision: 0.9225 |
|
- Recall: 0.9275 |
|
- F1: 0.9250 |
|
- Accuracy: 0.9564 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.4051 | 1.0 | 836 | 0.1752 | 0.9110 | 0.9098 | 0.9104 | 0.9493 | |
|
| 0.1506 | 2.0 | 1672 | 0.1492 | 0.9112 | 0.9207 | 0.9159 | 0.9529 | |
|
| 0.1182 | 3.0 | 2508 | 0.1632 | 0.9183 | 0.9229 | 0.9206 | 0.9552 | |
|
| 0.0973 | 4.0 | 3344 | 0.1544 | 0.9197 | 0.9216 | 0.9206 | 0.9550 | |
|
| 0.0796 | 5.0 | 4180 | 0.1676 | 0.9227 | 0.9221 | 0.9224 | 0.9569 | |
|
| 0.0673 | 6.0 | 5016 | 0.1829 | 0.9196 | 0.9206 | 0.9201 | 0.9548 | |
|
| 0.052 | 7.0 | 5852 | 0.1850 | 0.9220 | 0.9237 | 0.9228 | 0.9562 | |
|
| 0.0448 | 8.0 | 6688 | 0.1980 | 0.9187 | 0.9305 | 0.9246 | 0.9571 | |
|
| 0.0394 | 9.0 | 7524 | 0.2298 | 0.9147 | 0.9204 | 0.9176 | 0.9531 | |
|
| 0.0298 | 10.0 | 8360 | 0.2288 | 0.9217 | 0.9277 | 0.9247 | 0.9571 | |
|
| 0.028 | 11.0 | 9196 | 0.2434 | 0.9173 | 0.9231 | 0.9202 | 0.9545 | |
|
| 0.0233 | 12.0 | 10032 | 0.2609 | 0.9174 | 0.9275 | 0.9225 | 0.9558 | |
|
| 0.018 | 13.0 | 10868 | 0.2701 | 0.9211 | 0.9249 | 0.9230 | 0.9559 | |
|
| 0.0168 | 14.0 | 11704 | 0.2694 | 0.9206 | 0.9261 | 0.9234 | 0.9564 | |
|
| 0.0157 | 15.0 | 12540 | 0.2774 | 0.9213 | 0.929 | 0.9251 | 0.9568 | |
|
| 0.0148 | 16.0 | 13376 | 0.2923 | 0.9229 | 0.9255 | 0.9242 | 0.9565 | |
|
| 0.013 | 17.0 | 14212 | 0.2853 | 0.9229 | 0.9263 | 0.9246 | 0.9574 | |
|
| 0.0104 | 18.0 | 15048 | 0.2899 | 0.9224 | 0.9265 | 0.9245 | 0.9569 | |
|
| 0.0096 | 19.0 | 15884 | 0.2769 | 0.9239 | 0.9253 | 0.9246 | 0.9571 | |
|
| 0.009 | 20.0 | 16720 | 0.3074 | 0.9204 | 0.9267 | 0.9235 | 0.9570 | |
|
| 0.0098 | 21.0 | 17556 | 0.2985 | 0.9221 | 0.9287 | 0.9254 | 0.9573 | |
|
| 0.0071 | 22.0 | 18392 | 0.3293 | 0.9216 | 0.9277 | 0.9246 | 0.9561 | |
|
| 0.0069 | 23.0 | 19228 | 0.3135 | 0.9242 | 0.9285 | 0.9263 | 0.9572 | |
|
| 0.007 | 24.0 | 20064 | 0.3098 | 0.9226 | 0.9291 | 0.9258 | 0.9576 | |
|
| 0.0072 | 25.0 | 20900 | 0.3352 | 0.9241 | 0.9288 | 0.9265 | 0.9580 | |
|
| 0.0048 | 26.0 | 21736 | 0.3384 | 0.9228 | 0.9269 | 0.9249 | 0.9567 | |
|
| 0.006 | 27.0 | 22572 | 0.3316 | 0.9232 | 0.9276 | 0.9254 | 0.9575 | |
|
| 0.0057 | 28.0 | 23408 | 0.3381 | 0.9238 | 0.9272 | 0.9255 | 0.9578 | |
|
| 0.0051 | 29.0 | 24244 | 0.3494 | 0.9211 | 0.9282 | 0.9246 | 0.9568 | |
|
| 0.0046 | 30.0 | 25080 | 0.3379 | 0.9237 | 0.9254 | 0.9246 | 0.9570 | |
|
| 0.0044 | 31.0 | 25916 | 0.3512 | 0.9232 | 0.9251 | 0.9242 | 0.9565 | |
|
| 0.0037 | 32.0 | 26752 | 0.3625 | 0.9227 | 0.9252 | 0.9240 | 0.9563 | |
|
| 0.0029 | 33.0 | 27588 | 0.3476 | 0.9220 | 0.9264 | 0.9242 | 0.9574 | |
|
| 0.0039 | 34.0 | 28424 | 0.3635 | 0.9238 | 0.9275 | 0.9257 | 0.9575 | |
|
| 0.0034 | 35.0 | 29260 | 0.3685 | 0.9205 | 0.9247 | 0.9226 | 0.9554 | |
|
| 0.0033 | 36.0 | 30096 | 0.3693 | 0.9219 | 0.9245 | 0.9232 | 0.9555 | |
|
| 0.003 | 37.0 | 30932 | 0.3698 | 0.9239 | 0.9257 | 0.9248 | 0.9573 | |
|
| 0.0024 | 38.0 | 31768 | 0.3772 | 0.9242 | 0.926 | 0.9251 | 0.9570 | |
|
| 0.0029 | 39.0 | 32604 | 0.3798 | 0.9246 | 0.9281 | 0.9263 | 0.9563 | |
|
| 0.0024 | 40.0 | 33440 | 0.3804 | 0.9215 | 0.9264 | 0.9239 | 0.9562 | |
|
| 0.0017 | 41.0 | 34276 | 0.3804 | 0.9238 | 0.9274 | 0.9256 | 0.9570 | |
|
| 0.0025 | 42.0 | 35112 | 0.3808 | 0.9252 | 0.9273 | 0.9263 | 0.9570 | |
|
| 0.0025 | 43.0 | 35948 | 0.3794 | 0.9237 | 0.9282 | 0.9259 | 0.9568 | |
|
| 0.0029 | 44.0 | 36784 | 0.3784 | 0.9249 | 0.9282 | 0.9265 | 0.9576 | |
|
| 0.0019 | 45.0 | 37620 | 0.3895 | 0.9238 | 0.9281 | 0.9259 | 0.9569 | |
|
| 0.0019 | 46.0 | 38456 | 0.3859 | 0.9238 | 0.9284 | 0.9261 | 0.9572 | |
|
| 0.0017 | 47.0 | 39292 | 0.3906 | 0.9222 | 0.9277 | 0.9249 | 0.9567 | |
|
| 0.0016 | 48.0 | 40128 | 0.3933 | 0.9221 | 0.9273 | 0.9247 | 0.9565 | |
|
| 0.0016 | 49.0 | 40964 | 0.3924 | 0.9224 | 0.9273 | 0.9248 | 0.9565 | |
|
| 0.0017 | 50.0 | 41800 | 0.3933 | 0.9225 | 0.9275 | 0.9250 | 0.9564 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|