metadata
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 242.08 +/- 19.81
name: mean_reward
verified: false
PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.
Usage (with Stable-baselines3)
import gymnasium as gym
from time import sleep
from huggingface_sb3 import package_to_hub
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.vec_env import DummyVecEnv
# Create the environment
env = make_vec_env("LunarLander-v2", n_envs=16)
# We added some parameters to accelerate the training
model = PPO(
policy="MlpPolicy",
env=env,
n_steps=1024,
batch_size=64,
n_epochs=4,
gamma=0.999,
gae_lambda=0.98,
ent_coef=0.01,
verbose=1,
)
# Train it for 1,000,000 timesteps
model.learn(total_timesteps=1000000)
# Save the model
model.save(model_name)
# Test the model
# model = PPO.load(model_name)
eval_env = Monitor(gym.make("LunarLander-v2"))
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
# Visualize the model
env = gym.make("LunarLander-v2", render_mode='human')
state, _ = env.reset()
stop = False
while not stop:
action, _ = model.predict(state)
state, reward, terminated, truncated, info = env.step(action)
stop = terminated or truncated
env.render()
sleep(0.05)
if terminated or truncated:
observation, info = env.reset()
env.close()
...