|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: BERT2BERT_finetuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BERT2BERT_finetuned |
|
|
|
This model is a fine-tuned version of [JulienRPA/BERT2BERT_pretrained_LC-QuAD_2.0](https://huggingface.co/JulienRPA/BERT2BERT_pretrained_LC-QuAD_2.0) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4253 |
|
- Bleu: 95.481 |
|
- Em: 0.6019 |
|
- Rm: 0.6547 |
|
- Gen Len: 80.4676 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- num_epochs: 300.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Em | Rm | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:-------:| |
|
| 2.9129 | 50.0 | 1000 | 0.3861 | 92.7571 | 0.2302 | 0.2422 | 79.2806 | |
|
| 0.052 | 100.0 | 2000 | 0.3532 | 95.3257 | 0.5156 | 0.5635 | 80.6859 | |
|
| 0.0155 | 150.0 | 3000 | 0.4280 | 94.8017 | 0.5659 | 0.6355 | 79.3165 | |
|
| 0.0086 | 200.0 | 4000 | 0.4077 | 95.5885 | 0.5803 | 0.6283 | 80.6978 | |
|
| 0.0051 | 250.0 | 5000 | 0.4169 | 95.5923 | 0.6019 | 0.6523 | 80.6523 | |
|
| 0.0038 | 300.0 | 6000 | 0.4253 | 95.481 | 0.6019 | 0.6547 | 80.4676 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|