churn111 / README.md
JuliaDubov's picture
Upload folder using huggingface_hub
16fede9 verified
metadata
tags:
  - autotrain
  - tabular
  - regression
  - tabular-regression
datasets:
  - giulioappetito/churn_dataset_giulioappetito

Model Trained Using AutoTrain

  • Problem type: Tabular regression

Validation Metrics

  • r2: 0.75551694767912
  • mse: 0.06038101818653434
  • mae: 0.12572727079081708
  • rmse: 0.24572549356250023
  • rmsle: 0.1700195996741877
  • loss: 0.24572549356250023

Best Params

  • learning_rate: 0.19966547950225813
  • reg_lambda: 1.1910980465515898e-05
  • reg_alpha: 0.003345407176272181
  • subsample: 0.5134686751829827
  • colsample_bytree: 0.7469701482100698
  • max_depth: 7
  • early_stopping_rounds: 407
  • n_estimators: 15000
  • eval_metric: rmse

Usage

import json
import joblib
import pandas as pd

model = joblib.load('model.joblib')
config = json.load(open('config.json'))

features = config['features']

# data = pd.read_csv("data.csv")
data = data[features]

predictions = model.predict(data)  # or model.predict_proba(data)

# predictions can be converted to original labels using label_encoders.pkl