Jsevisal's picture
Update README.md
73c388d
metadata
tags:
  - generated_from_trainer
widget:
  - text: I'm fine. Who is this?
  - text: You can't take anything seriously.
  - text: In the end he's going to croak, isn't he?
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ft-roberta-gest-pred-seqeval-partialmatch
    results: []
datasets:
  - Jsevisal/gesture_pred
pipeline_tag: token-classification
license: other

roberta-gest-pred-seqeval-partialmatch

This model is a fine-tuned version of xlm-roberta-large-finetuned-conll03-english on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6258
  • Precision: 0.7927
  • Recall: 0.7354
  • F1: 0.7381
  • Accuracy: 0.8323

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.8351 1.0 147 0.9547 0.5114 0.4560 0.4404 0.7414
0.8448 2.0 294 0.6491 0.7273 0.6873 0.6768 0.8103
0.5622 3.0 441 0.7047 0.7169 0.6724 0.6631 0.8044
0.3594 4.0 588 0.6258 0.7927 0.7354 0.7381 0.8323
0.2304 5.0 735 0.7149 0.7861 0.7029 0.7086 0.8389
0.1566 6.0 882 0.7313 0.8518 0.8039 0.7852 0.8549
0.1021 7.0 1029 0.7592 0.8084 0.7493 0.7462 0.8639
0.0718 8.0 1176 0.8252 0.8115 0.7470 0.7336 0.8591
0.0518 9.0 1323 0.9014 0.8112 0.7495 0.7343 0.8639
0.0395 10.0 1470 0.9160 0.8093 0.7469 0.7331 0.8633

Framework versions

  • Transformers 4.27.3
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2

LICENSE

Copyright (c) 2014, Universidad Carlos III de Madrid. Todos los derechos reservados. Este software es propiedad de la Universidad Carlos III de Madrid, grupo de investigaci贸n Robots Sociales. La Universidad Carlos III de Madrid es titular en exclusiva de los derechos de propiedad intelectual de este software. Queda prohibido cualquier uso indebido o no autorizado, entre estos, a t铆tulo enunciativo pero no limitativo, la reproducci贸n, fijaci贸n, distribuci贸n, comunicaci贸n p煤blica, ingenier铆a inversa y/o transformaci贸n sobre dicho software, ya sea total o parcialmente, siendo el responsable del uso indebido o no autorizado tambi茅n responsable de las consecuencias legales que pudieran derivarse de sus actos.