Jsevisal's picture
Update README.md
a9ec1e6
|
raw
history blame
2.68 kB
metadata
license: apache-2.0
widget:
  - text: I'm fine. Who is this?
  - text: You can't take anything seriously.
  - text: In the end he''s going to croak, isn''t he?
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-gest-pred-seqeval-partialmatch
    results: []
datasets:
  - Jsevisal/gesture_pred
language:
  - en
pipeline_tag: token-classification

distilbert-gest-pred-seqeval-partialmatch

This model is a fine-tuned version of elastic/distilbert-base-cased-finetuned-conll03-english on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.711886
  • Precision: 0.832250
  • Recall: 0.832250
  • F1: 0.832250
  • Accuracy: 0.817295

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.9119 1.0 147 1.1835 0.7412 0.7412 0.7412 0.7204
0.9884 2.0 294 0.8666 0.7906 0.7906 0.7906 0.7731
0.7238 3.0 441 0.7754 0.8056 0.8056 0.8056 0.7906
0.5564 4.0 588 0.7129 0.8114 0.8114 0.8114 0.7965
0.4343 5.0 735 0.7119 0.8322 0.8322 0.8322 0.8173
0.3261 6.0 882 0.7545 0.8179 0.8179 0.8179 0.8075
0.2688 7.0 1029 0.7760 0.8121 0.8121 0.8121 0.8010
0.2178 8.0 1176 0.7744 0.8283 0.8283 0.8283 0.8179
0.1822 9.0 1323 0.7894 0.8322 0.8322 0.8322 0.8231
0.1636 10.0 1470 0.7941 0.8316 0.8316 0.8316 0.8218

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2