Jsevisal's picture
Update README.md
a783a3c
metadata
license: other
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: balanced-augmented-roberta-gest-pred-seqeval-partialmatch
    results: []
datasets:
  - Jsevisal/balanced_augmented_dataset

balanced-augmented-roberta-gest-pred-seqeval-partialmatch

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0205
  • Precision: 0.8078
  • Recall: 0.7940
  • F1: 0.7858
  • Accuracy: 0.7719

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
3.3 1.0 32 2.8009 0.1141 0.0540 0.0277 0.1988
2.6869 2.0 64 2.2620 0.4024 0.2823 0.2481 0.4226
2.1156 3.0 96 1.8908 0.5454 0.4891 0.4747 0.5199
1.6102 4.0 128 1.5835 0.6868 0.5677 0.5695 0.5848
1.2618 5.0 160 1.4404 0.6727 0.6524 0.6344 0.6268
0.9889 6.0 192 1.2944 0.6989 0.6854 0.6678 0.6539
0.7903 7.0 224 1.2089 0.7593 0.7300 0.7268 0.6890
0.6012 8.0 256 1.1102 0.7518 0.7317 0.7253 0.7002
0.4669 9.0 288 1.1172 0.7721 0.7503 0.7444 0.7156
0.3804 10.0 320 1.0754 0.7632 0.7568 0.7470 0.7251
0.2976 11.0 352 1.0320 0.7794 0.7846 0.7703 0.7539
0.2444 12.0 384 1.0436 0.7900 0.7741 0.7734 0.7549
0.1991 13.0 416 1.0856 0.8092 0.7860 0.7805 0.7544
0.1706 14.0 448 1.0205 0.8078 0.7940 0.7858 0.7719
0.1406 15.0 480 1.0274 0.8149 0.7950 0.7914 0.7687
0.1209 16.0 512 1.0888 0.8094 0.7949 0.7864 0.7693
0.1145 17.0 544 1.1166 0.8103 0.7930 0.7848 0.7613
0.1022 18.0 576 1.0935 0.8068 0.7921 0.7842 0.7618
0.0963 19.0 608 1.0940 0.8139 0.7948 0.7878 0.7666
0.0953 20.0 640 1.0890 0.8168 0.7954 0.7899 0.7671

Framework versions

  • Transformers 4.27.3
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2

LICENSE

Copyright (c) 2014, Universidad Carlos III de Madrid. Todos los derechos reservados. Este software es propiedad de la Universidad Carlos III de Madrid, grupo de investigaci贸n Robots Sociales. La Universidad Carlos III de Madrid es titular en exclusiva de los derechos de propiedad intelectual de este software. Queda prohibido cualquier uso indebido o no autorizado, entre estos, a t铆tulo enunciativo pero no limitativo, la reproducci贸n, fijaci贸n, distribuci贸n, comunicaci贸n p煤blica, ingenier铆a inversa y/o transformaci贸n sobre dicho software, ya sea total o parcialmente, siendo el responsable del uso indebido o no autorizado tambi茅n responsable de las consecuencias legales que pudieran derivarse de sus actos.