Jsevisal's picture
Update README.md
1cbd213
|
raw
history blame
3.53 kB
metadata
license: apache-2.0
widget:
  - text: I'm fine. Who is this?
  - text: You can't take anything seriously.
  - text: In the end he's going to croak, isn't he?
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: balanced-augmented-bert-gest-pred-seqeval-partialmatch
    results: []
pipeline_tag: token-classification
datasets:
  - Jsevisal/balanced_augmented_dataset

balanced-augmented-bert-gest-pred-seqeval-partialmatch

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8382
  • Precision: 0.8478
  • Recall: 0.8224
  • F1: 0.8293
  • Accuracy: 0.8118

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
3.3729 1.0 32 2.8438 0.0806 0.0549 0.0294 0.1986
2.7169 2.0 64 2.2356 0.4355 0.2940 0.2982 0.4307
2.0107 3.0 96 1.7202 0.6950 0.5187 0.5245 0.5698
1.4085 4.0 128 1.3703 0.7994 0.6487 0.6499 0.6582
0.9974 5.0 160 1.1172 0.8205 0.7349 0.7514 0.7156
0.6996 6.0 192 1.0020 0.8220 0.7550 0.7684 0.7451
0.492 7.0 224 0.9132 0.8203 0.7626 0.7722 0.7549
0.3593 8.0 256 0.8785 0.8475 0.8042 0.8135 0.7921
0.2618 9.0 288 0.8383 0.8395 0.8135 0.8199 0.7999
0.1928 10.0 320 0.8410 0.8433 0.8165 0.8240 0.8014
0.1541 11.0 352 0.8382 0.8478 0.8224 0.8293 0.8118
0.1216 12.0 384 0.8667 0.8259 0.8253 0.8210 0.8046
0.096 13.0 416 0.8726 0.8471 0.8253 0.8301 0.8133
0.0767 14.0 448 0.8826 0.8475 0.8307 0.8330 0.8102
0.0696 15.0 480 0.8964 0.8411 0.8285 0.8303 0.8149
0.057 16.0 512 0.9194 0.8365 0.8292 0.8289 0.8097
0.0514 17.0 544 0.9085 0.8502 0.8277 0.8326 0.8118
0.0468 18.0 576 0.9261 0.8345 0.8250 0.8243 0.8092
0.0437 19.0 608 0.9279 0.8394 0.8258 0.8270 0.8118
0.0414 20.0 640 0.9263 0.8443 0.8275 0.8298 0.8139

Framework versions

  • Transformers 4.27.3
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2