metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
model-index:
- name: bert-base-uncased-finetuned-math_punctuation-ignore_word_parts
results: []
bert-base-uncased-finetuned-math_punctuation-ignore_word_parts
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1981
- Precision: 0.7843
- Recall: 0.7485
- F Score: 0.7648
- Auc: 0.9248
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F Score | Auc |
---|---|---|---|---|---|---|---|
0.1064 | 0.64 | 500 | 0.1082 | 0.7558 | 0.6580 | 0.6964 | 0.9086 |
0.0781 | 1.27 | 1000 | 0.1025 | 0.7594 | 0.7226 | 0.7365 | 0.9261 |
0.0757 | 1.91 | 1500 | 0.1001 | 0.7945 | 0.6899 | 0.7302 | 0.9272 |
0.0538 | 2.54 | 2000 | 0.1061 | 0.7689 | 0.7348 | 0.7480 | 0.9298 |
0.0425 | 3.18 | 2500 | 0.1123 | 0.7806 | 0.7361 | 0.7560 | 0.9300 |
0.0377 | 3.81 | 3000 | 0.1159 | 0.7841 | 0.7437 | 0.7610 | 0.9292 |
0.0235 | 4.45 | 3500 | 0.1259 | 0.7786 | 0.7368 | 0.7561 | 0.9276 |
0.0227 | 5.08 | 4000 | 0.1436 | 0.7699 | 0.7448 | 0.7555 | 0.9277 |
0.0159 | 5.72 | 4500 | 0.1466 | 0.7715 | 0.7333 | 0.7514 | 0.9252 |
0.0106 | 6.35 | 5000 | 0.1574 | 0.7710 | 0.7456 | 0.7566 | 0.9276 |
0.0111 | 6.99 | 5500 | 0.1560 | 0.7694 | 0.7500 | 0.7595 | 0.9286 |
0.0074 | 7.62 | 6000 | 0.1645 | 0.7789 | 0.7511 | 0.7639 | 0.9305 |
0.0056 | 8.26 | 6500 | 0.1745 | 0.7887 | 0.7453 | 0.7648 | 0.9265 |
0.005 | 8.89 | 7000 | 0.1760 | 0.7779 | 0.7497 | 0.7629 | 0.9281 |
0.0038 | 9.53 | 7500 | 0.1873 | 0.7826 | 0.7505 | 0.7634 | 0.9273 |
0.0031 | 10.17 | 8000 | 0.1896 | 0.7855 | 0.7477 | 0.7644 | 0.9258 |
0.0026 | 10.8 | 8500 | 0.1929 | 0.7849 | 0.7485 | 0.7650 | 0.9263 |
0.0017 | 11.44 | 9000 | 0.1981 | 0.7843 | 0.7485 | 0.7648 | 0.9248 |
Framework versions
- Transformers 4.25.1
- Pytorch 2.0.0.dev20230111
- Datasets 2.8.0
- Tokenizers 0.13.2