beto-finetuned-ner / README.md
JoshuaAAX's picture
Training complete
15121a6 verified
|
raw
history blame
2.89 kB
---
license: cc-by-4.0
base_model: NazaGara/NER-fine-tuned-BETO
tags:
- generated_from_trainer
datasets:
- conll2002
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: beto-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2002
type: conll2002
config: es
split: validation
args: es
metrics:
- name: Precision
type: precision
value: 0.8406680207628074
- name: Recall
type: recall
value: 0.8559283088235294
- name: F1
type: f1
value: 0.8482295343276784
- name: Accuracy
type: accuracy
value: 0.9701989833870568
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# beto-finetuned-ner
This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2247
- Precision: 0.8407
- Recall: 0.8559
- F1: 0.8482
- Accuracy: 0.9702
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0512 | 1.0 | 521 | 0.1314 | 0.8328 | 0.8562 | 0.8443 | 0.9703 |
| 0.0305 | 2.0 | 1042 | 0.1549 | 0.8320 | 0.8442 | 0.8380 | 0.9688 |
| 0.0193 | 3.0 | 1563 | 0.1498 | 0.8515 | 0.8580 | 0.8548 | 0.9708 |
| 0.0148 | 4.0 | 2084 | 0.1809 | 0.8374 | 0.8447 | 0.8410 | 0.9682 |
| 0.0112 | 5.0 | 2605 | 0.1900 | 0.8391 | 0.8518 | 0.8454 | 0.9702 |
| 0.0078 | 6.0 | 3126 | 0.1839 | 0.8361 | 0.8545 | 0.8452 | 0.9707 |
| 0.0058 | 7.0 | 3647 | 0.2060 | 0.8428 | 0.8534 | 0.8480 | 0.9702 |
| 0.0049 | 8.0 | 4168 | 0.2111 | 0.8334 | 0.8527 | 0.8429 | 0.9697 |
| 0.0037 | 9.0 | 4689 | 0.2252 | 0.8360 | 0.8502 | 0.8430 | 0.9692 |
| 0.0031 | 10.0 | 5210 | 0.2247 | 0.8407 | 0.8559 | 0.8482 | 0.9702 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1