autoevaluator
HF staff
Add evaluation results on the default config and test split of emotion
463961f
language: en | |
widget: | |
- text: I am really upset that I have to call up to three times to the number on the | |
back of my insurance card for my call to be answer | |
tags: | |
- sagemaker | |
- roberta-base | |
- text classification | |
license: apache-2.0 | |
datasets: | |
- emotion | |
model-index: | |
- name: sagemaker-roberta-base-emotion | |
results: | |
- task: | |
name: Multi Class Text Classification | |
type: text-classification | |
dataset: | |
name: emotion | |
type: emotion | |
metrics: | |
- name: Validation Accuracy | |
type: accuracy | |
value: 94.1 | |
- name: Validation F1 | |
type: f1 | |
value: 94.13 | |
- task: | |
type: text-classification | |
name: Text Classification | |
dataset: | |
name: emotion | |
type: emotion | |
config: default | |
split: test | |
metrics: | |
- name: Accuracy | |
type: accuracy | |
value: 0.931 | |
verified: true | |
- name: Precision Macro | |
type: precision | |
value: 0.8833042147663716 | |
verified: true | |
- name: Precision Micro | |
type: precision | |
value: 0.931 | |
verified: true | |
- name: Precision Weighted | |
type: precision | |
value: 0.9337002742192515 | |
verified: true | |
- name: Recall Macro | |
type: recall | |
value: 0.9087144572668905 | |
verified: true | |
- name: Recall Micro | |
type: recall | |
value: 0.931 | |
verified: true | |
- name: Recall Weighted | |
type: recall | |
value: 0.931 | |
verified: true | |
- name: F1 Macro | |
type: f1 | |
value: 0.8949974527433656 | |
verified: true | |
- name: F1 Micro | |
type: f1 | |
value: 0.931 | |
verified: true | |
- name: F1 Weighted | |
type: f1 | |
value: 0.9318434300647934 | |
verified: true | |
- name: loss | |
type: loss | |
value: 0.17379647493362427 | |
verified: true | |
## roberta-base | |
This model is a fine-tuned model that was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. | |
- Problem type: Multi Class Text Classification (emotion detection). | |
It achieves the following results on the evaluation set: | |
- Loss: 0.1613253802061081 | |
- f1: 0.9413321705151999 | |
## Hyperparameters | |
```json | |
{ | |
"epochs": 10, | |
"train_batch_size": 16, | |
"learning_rate": 3e-5, | |
"weight_decay":0.01, | |
"load_best_model_at_end": true, | |
"model_name":"roberta-base", | |
"do_eval": True, | |
"load_best_model_at_end":True | |
} | |
``` | |
## Validation Metrics | |
| key | value | | |
| --- | ----- | | |
| eval_accuracy | 0.941 | | |
| eval_f1 | 0.9413321705151999 | | |
| eval_loss | 0.1613253802061081| | |
| eval_recall | 0.941 | | |
| eval_precision | 0.9419519436781406 | | |