Jorgeutd's picture
Librarian Bot: Add base_model information to model (#3)
3a56115
---
language: en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
widget:
- text: My name is Scott and I live in Columbus.
- text: Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne.
base_model: albert-base-v2
model-index:
- name: albert-base-v2-finetuned-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- type: precision
value: 0.9252213840603477
name: Precision
- type: recall
value: 0.9329732113328189
name: Recall
- type: f1
value: 0.9290811285541773
name: F1
- type: accuracy
value: 0.9848205157332728
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-base-v2-finetuned-ner
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0626
- Precision: 0.9252
- Recall: 0.9330
- F1: 0.9291
- Accuracy: 0.9848
## Model description
More information needed
## limitations
#### Limitations and bias
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.
#### How to use
You can use this model with Transformers *pipeline* for NER.
```python
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/albert-base-v2-finetuned-ner")
model = AutoModelForTokenClassification.from_pretrained("Jorgeutd/albert-base-v2-finetuned-ner")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "My name is Scott and I live in Ohio"
ner_results = nlp(example)
print(ner_results)
```
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 220 | 0.0863 | 0.8827 | 0.8969 | 0.8898 | 0.9773 |
| No log | 2.0 | 440 | 0.0652 | 0.8951 | 0.9199 | 0.9073 | 0.9809 |
| 0.1243 | 3.0 | 660 | 0.0626 | 0.9191 | 0.9208 | 0.9200 | 0.9827 |
| 0.1243 | 4.0 | 880 | 0.0585 | 0.9227 | 0.9281 | 0.9254 | 0.9843 |
| 0.0299 | 5.0 | 1100 | 0.0626 | 0.9252 | 0.9330 | 0.9291 | 0.9848 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.8.1+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0