JoonJoon's picture
update model card README.md
29e2af0
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - klue
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: koelectra-base-v3-discriminator-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: klue
          type: klue
          args: ner
        metrics:
          - name: Precision
            type: precision
            value: 0.6665182546749777
          - name: Recall
            type: recall
            value: 0.7350073648032546
          - name: F1
            type: f1
            value: 0.6990893625537877
          - name: Accuracy
            type: accuracy
            value: 0.9395764497172635

koelectra-base-v3-discriminator-finetuned-ner

This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1957
  • Precision: 0.6665
  • Recall: 0.7350
  • F1: 0.6991
  • Accuracy: 0.9396

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 438 0.2588 0.5701 0.6655 0.6141 0.9212
0.4333 2.0 876 0.2060 0.6671 0.7134 0.6895 0.9373
0.1944 3.0 1314 0.1957 0.6665 0.7350 0.6991 0.9396

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.12.0+cu102
  • Datasets 1.14.0
  • Tokenizers 0.10.3