JoBeer's picture
Librarian Bot: Update dataset YAML metadata for model (#1)
95c3a15
|
raw
history blame
1.63 kB
metadata
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers
datasets: JoBeer/eclassTrainST
pipeline_tag: sentence-similarity

all-mpnet-base-v2-eclass

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('JoBeer/all-mpnet-base-v2-eclass')
embeddings = model.encode(sentences)
print(embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The Model was trained with the eclass-dataset (https://huggingface.co/datasets/JoBeer/eclassTrainST).

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Normalize()
)