|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch Doge model configuration"""
|
|
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.modeling_rope_utils import rope_config_validation
|
|
|
|
|
|
class DogeConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`DogeModel`]. It is used to instantiate an Doge
|
|
model according to the specified arguments, defining the model architecture like [JingzeShi/Doge-20M](https://huggingface.co/JingzeShi/Doge-20M).
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 32768):
|
|
Vocabulary size of the Doge model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`DogeModel`]
|
|
num_channels (`int`, *optional*, defaults to 3):
|
|
Number of channels in the input image.
|
|
patch_size (`int`, *optional*, defaults to 16):
|
|
Patch size of Vision Transformer Embeddings.
|
|
hidden_size (`int`, *optional*, defaults to 1024):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 2048):
|
|
Dimension of the CDMoE representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
|
Number of hidden layers in the Transformer decoder.
|
|
hidden_bias (`bool`, *optional*, defaults to `False`):
|
|
Whether to use bias in the hidden layers.
|
|
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
|
Dropout probability for each sequence transformation and state transformation module.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
|
The non-linear activation function (function or string) in the decoder.
|
|
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
|
The maximum sequence length that this model might ever be used with.
|
|
rope_theta (`float`, *optional*, defaults to 10000.0):
|
|
The base period of the RoPE embeddings.
|
|
rope_scaling (`Dict`, *optional*):
|
|
Dictionary containing the scaling configuration for the RoPE embeddings.
|
|
NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly.
|
|
Expected contents:
|
|
`rope_type` (`str`):
|
|
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation.
|
|
`factor` (`float`, *optional*):
|
|
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings.
|
|
In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length.
|
|
`original_max_position_embeddings` (`int`, *optional*):
|
|
Used with 'dynamic', 'longrope' and 'llama3'.
|
|
The original max position embeddings used during pretraining.
|
|
`attention_factor` (`float`, *optional*):
|
|
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
|
computation.
|
|
If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value.
|
|
`beta_fast` (`float`, *optional*):
|
|
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
|
ramp function. If unspecified, it defaults to 32.
|
|
`beta_slow` (`float`, *optional*):
|
|
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
|
ramp function. If unspecified, it defaults to 1.
|
|
`short_factor` (`List[float]`, *optional*):
|
|
Only used with 'longrope'. The scaling factor to be applied to short contexts (<`original_max_position_embeddings`).
|
|
Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
|
|
`long_factor` (`List[float]`, *optional*):
|
|
Only used with 'longrope'. The scaling factor to be applied to long contexts (<`original_max_position_embeddings`).
|
|
Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
|
|
`low_freq_factor` (`float`, *optional*):
|
|
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
|
`high_freq_factor` (`float`, *optional*):
|
|
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
pad_token_id (`int`, *optional*, defaults to 0):
|
|
Padding token id.
|
|
bos_token_id (`int`, *optional*, defaults to 1):
|
|
Beginning of stream token id.
|
|
eos_token_id (`int`, *optional*, defaults to 2):
|
|
End of stream token id.
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
|
|
Whether to tie weight embeddings
|
|
num_attention_heads (`int`, *optional*, defaults to 8):
|
|
Number of attention heads for each attention layer in the Transformer decoder.
|
|
num_key_value_heads (`int`, *optional*, defaults to `None`):
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention.
|
|
If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.
|
|
When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group.
|
|
For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf).
|
|
If it is not specified, will default to `num_attention_heads`.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
is_moe (`bool`, *optional*, defaults to `False`):
|
|
Whether to use the Cross Domain Mixture of Experts, if `True`, the MoE will inherit the MLP to initialize
|
|
num_cdmmoe_experts (`int`, *optional*, defaults to 2048):
|
|
Number of Private Experts for the Cross Domain Mixture of Experts.
|
|
num_cdmmoe_heads (`int`, *optional*, defaults to 4):
|
|
Number of heads of Private Experts for the Cross Domain Mixture of Experts.
|
|
num_cdmmoe_experts_per_head (`int`, *optional*, defaults to 8):
|
|
Number of Private Experts per head for the Cross Domain Mixture of Experts.
|
|
expert_retrieval_size (`int`, *optional*, defaults to 256):
|
|
Dimension of the Expert retrieval states for the Cross Domain Mixture of Experts.
|
|
"""
|
|
|
|
model_type = "doge"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=32768,
|
|
num_channels=3,
|
|
patch_size=16,
|
|
hidden_size=1024,
|
|
intermediate_size=2048,
|
|
num_hidden_layers=32,
|
|
hidden_bias=False,
|
|
hidden_dropout=0.0,
|
|
hidden_act="silu",
|
|
max_position_embeddings=2048,
|
|
rope_theta=10000.0,
|
|
rope_scaling={
|
|
"rope_type": "dynamic",
|
|
"factor": 4.0,
|
|
"original_max_position_embeddings": 2048,
|
|
},
|
|
initializer_range=0.02,
|
|
rms_norm_eps=1e-06,
|
|
use_cache=True,
|
|
bos_token_id=0,
|
|
eos_token_id=1,
|
|
pad_token_id=2,
|
|
tie_word_embeddings=True,
|
|
num_attention_heads=8,
|
|
num_key_value_heads=None,
|
|
attention_dropout=0.0,
|
|
is_moe=False,
|
|
num_cdmmoe_experts=2048,
|
|
num_cdmmoe_heads=4,
|
|
num_cdmmoe_experts_per_head=8,
|
|
expert_retrieval_size=256,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.num_channels = num_channels
|
|
self.patch_size = patch_size
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.hidden_bias = hidden_bias
|
|
self.hidden_dropout = hidden_dropout
|
|
self.hidden_act = hidden_act
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.rope_theta = rope_theta
|
|
self.rope_scaling = rope_scaling
|
|
self.initializer_range = initializer_range
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.use_cache = use_cache
|
|
self.bos_token_id = bos_token_id
|
|
self.eos_token_id = eos_token_id
|
|
self.pad_token_id = pad_token_id
|
|
self.tie_word_embeddings = tie_word_embeddings
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.attention_dropout = attention_dropout
|
|
self.is_moe = is_moe
|
|
self.num_cdmmoe_experts = num_cdmmoe_experts
|
|
self.num_cdmmoe_heads = num_cdmmoe_heads
|
|
self.num_cdmmoe_experts_per_head = num_cdmmoe_experts_per_head
|
|
self.expert_retrieval_size = expert_retrieval_size
|
|
|
|
|
|
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
|
rope_config_validation(self)
|
|
|
|
super().__init__(
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
pad_token_id=pad_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
|