DiffHIC / train.py
Jing-An's picture
Update train.py
6f7cca9 verified
import os
from os import listdir
from os.path import isfile
import torch
import numpy as np
import torchvision
import torch.utils.data
import re
import random
import pandas as pd
import matplotlib.pyplot as plt
import tqdm
import torch.nn.functional as F
import numpy as np
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from datetime import datetime
import torch.nn as nn
from torch import optim
import h5py
class EMAHelper(object):
def __init__(self, mu=0.999):
self.mu = mu
self.shadow = {}
def register(self, module):
if isinstance(module, nn.DataParallel):
module = module.module
for name, param in module.named_parameters():
if param.requires_grad:
self.shadow[name] = param.data.clone()
def update(self, module):
if isinstance(module, nn.DataParallel):
module = module.module
for name, param in module.named_parameters():
if param.requires_grad:
self.shadow[name].data = (1. - self.mu) * param.data + self.mu * self.shadow[name].data
def ema(self, module):
if isinstance(module, nn.DataParallel):
module = module.module
for name, param in module.named_parameters():
if param.requires_grad:
param.data.copy_(self.shadow[name].data)
def ema_copy(self, module):
if isinstance(module, nn.DataParallel):
inner_module = module.module
module_copy = type(inner_module)(inner_module.config).to(inner_module.config.device)
module_copy.load_state_dict(inner_module.state_dict())
module_copy = nn.DataParallel(module_copy)
else:
module_copy = type(module)(module.config).to(module.config.device)
module_copy.load_state_dict(module.state_dict())
self.ema(module_copy)
return module_copy
def state_dict(self):
return self.shadow
def load_state_dict(self, state_dict):
self.shadow = state_dict
class spec:
def __init__(self, data_dir,batch_size,num_workers):
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
self.transforms = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
def get_loaders(self):
print("=> Loader the spectra dataset...")
train_dataset = specDataset(dir=os.path.join(self.data_dir, '../0_40PbPb502train'), transforms = self.transforms)
val_dataset = specDataset(dir=os.path.join(self.data_dir, '../0_40PbPb502val'), transforms=self.transforms)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size = self.batch_size, shuffle = True, num_workers = self.num_workers, pin_memory = True)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers, pin_memory=True)
return train_loader , val_loader
class specDataset(torch.utils.data.Dataset):
def __init__(self, dir, transforms):
super().__init__()
self.dir = dir
spec_dir = dir
input_names = []
#training file list
inputs = os.path.join(spec_dir)
profiles = [f for f in listdir(inputs) if isfile(os.path.join(inputs, f))]
input_names += [os.path.join(inputs, i) for i in profiles]
#this is a list of filenames
x = list(enumerate(input_names))
random.shuffle(x)
indices, input_names = zip(*x)
self.input_names = input_names
self.transforms = transforms
def get_profiles(self, index):
input_name = self.input_names[index]
#read h5 file
dataset = h5py.File(input_name, 'r')
IC = dataset['IC'][:]
chSpec = dataset['chSpec'][:]
shear = int(input_name[-4])
IC = IC[18:82,18:82]
return self.transforms(IC).view(1,64,64), self.transforms(chSpec).view(1,64,64), shear
def __getitem__(self, index):
res = self.get_profiles(index)
return res
def __len__(self):
return len(self.input_names)
data_dir = './'
batch_size = 32
num_workers = 4
DATASET = spec(data_dir, batch_size, num_workers)
train_loader, valloader = DATASET.get_loaders()
print(len(train_loader))
print(len(valloader))
from diffusion_cond import *
from Diff_unet_attn import *
def init_weights(m):
if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def validate(model, valloader, diffusion, device):
model.eval()
#ema_model.eval()
val_loss = 0
mse = nn.MSELoss()
with torch.no_grad():
for i, (condition,Spec,shear) in enumerate(valloader):
condition = condition.to(device).to(torch.float32)
Spec = Spec.to(device).to(torch.float32)
shear = shear.to(device)
t = diffusion.sample_timesteps(Spec.shape[0]).to(device)
Spec_t, noise = diffusion.noise_images(Spec, t)
predicted_noise = model(torch.cat([condition, Spec_t], dim=1), t,shear)
loss = mse(predicted_noise,noise)
val_loss += loss.item()
val_loss /= len(valloader)
return val_loss
epochs = 10000
def train(epochs):
device = torch.device("cuda" if torch.cuda.is_available else "cpu")
model = DiffusionUNet(ch = 128, num_res_blocks=2, image_size = 64, drop_out = 0).to(device)
if torch.cuda.device_count() > 1:
print(torch.cuda.device_count())
model = nn.DataParallel(model)
model.apply(init_weights)
ema_helper = EMAHelper()
ema_helper.register(model)
optimizer = optim.AdamW(model.parameters(), lr=0.0001)
#optimizer = optim.Adam(model.parameters(), lr=0.0005, weight_decay=0.0,betas=(0.9, 0.999), amsgrad=False, eps=0.00000001)
#scheduler = optim.lr_scheduler.CyclicLR(optimizer, base_lr=0.00001, max_lr=0.001, step_size_up=2000, mode='triangular2')
mse = nn.MSELoss()
diffusion = Diffusion(img_size = 64, device=device)
l = len(train_loader)
best_loss = float("inf")
for epoch in range(epochs):
epoch_loss=0
for i, (condition, Spec, shear) in enumerate(train_loader):
condition = condition.to(device).to(torch.float32)
Spec = Spec.to(device).to(torch.float32)
shear = shear.to(device)
t = diffusion.sample_timesteps(Spec.shape[0]).to(device)
Spec_t, noise = diffusion.noise_images(Spec, t)
predicted_noise = model(torch.cat([condition, Spec_t], dim=1), t,shear)
loss = mse(predicted_noise,noise)
optimizer.zero_grad()
loss.backward()
optimizer.step()
ema_helper.update(model)
epoch_loss = epoch_loss+loss.item()/l
val_loss=validate(model, valloader, diffusion, device)
current_time = datetime.now()
print(current_time,f"Epoch [{epoch+1}/{epochs}], Train Loss: {epoch_loss:.4f}, Val Loss: {val_loss:.4f}")
if best_loss > val_loss:
best_loss = val_loss
torch.save(model.state_dict(), 'model.pth')
torch.save(ema_helper.state_dict(), 'ema_model.pth')
current_time = datetime.now()
print(current_time,'model is saved. The loss is ',val_loss)
train(epochs=10000)