Jiahuita
commited on
Commit
•
84938ff
1
Parent(s):
700431a
modified pipeline and config according to model summary
Browse files- config.json +2 -2
- pipeline.py +17 -7
config.json
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca780bf53be3df893073f50ad0e8218deae4f6c157eb3184480b43e3e86841fb
|
3 |
+
size 323
|
pipeline.py
CHANGED
@@ -10,14 +10,16 @@ class NewsClassifierConfig(PretrainedConfig):
|
|
10 |
|
11 |
def __init__(
|
12 |
self,
|
13 |
-
max_length=
|
14 |
-
vocab_size=
|
15 |
-
|
|
|
16 |
num_labels=2,
|
17 |
**kwargs
|
18 |
):
|
19 |
self.max_length = max_length
|
20 |
self.vocab_size = vocab_size
|
|
|
21 |
self.hidden_size = hidden_size
|
22 |
self.num_labels = num_labels
|
23 |
super().__init__(**kwargs)
|
@@ -28,26 +30,34 @@ class NewsClassifier(PreTrainedModel):
|
|
28 |
|
29 |
def __init__(self, config):
|
30 |
super().__init__(config)
|
|
|
|
|
|
|
|
|
|
|
31 |
self.model = load_model('news_classifier.h5')
|
32 |
with open('tokenizer.json', 'r') as f:
|
33 |
tokenizer_data = json.load(f)
|
34 |
self.tokenizer = tokenizer_from_json(tokenizer_data)
|
35 |
|
36 |
def forward(self, text_input):
|
|
|
|
|
|
|
37 |
if isinstance(text_input, str):
|
38 |
text_input = [text_input]
|
39 |
|
40 |
sequences = self.tokenizer.texts_to_sequences(text_input)
|
41 |
padded = pad_sequences(sequences, maxlen=self.config.max_length)
|
42 |
-
predictions = self.model.predict(padded)
|
43 |
|
44 |
results = []
|
45 |
for pred in predictions:
|
46 |
-
|
47 |
-
|
48 |
results.append({
|
49 |
"label": label,
|
50 |
-
"score": score
|
51 |
})
|
52 |
|
53 |
return results[0] if len(text_input) == 1 else results
|
|
|
10 |
|
11 |
def __init__(
|
12 |
self,
|
13 |
+
max_length=41, # Modified to match model input shape
|
14 |
+
vocab_size=74934, # Modified based on embedding layer size
|
15 |
+
embedding_dim=128, # Added to match model architecture
|
16 |
+
hidden_size=64, # Matches final LSTM layer
|
17 |
num_labels=2,
|
18 |
**kwargs
|
19 |
):
|
20 |
self.max_length = max_length
|
21 |
self.vocab_size = vocab_size
|
22 |
+
self.embedding_dim = embedding_dim
|
23 |
self.hidden_size = hidden_size
|
24 |
self.num_labels = num_labels
|
25 |
super().__init__(**kwargs)
|
|
|
30 |
|
31 |
def __init__(self, config):
|
32 |
super().__init__(config)
|
33 |
+
self.model = None
|
34 |
+
self.tokenizer = None
|
35 |
+
|
36 |
+
def post_init(self):
|
37 |
+
"""Load model and tokenizer after initialization"""
|
38 |
self.model = load_model('news_classifier.h5')
|
39 |
with open('tokenizer.json', 'r') as f:
|
40 |
tokenizer_data = json.load(f)
|
41 |
self.tokenizer = tokenizer_from_json(tokenizer_data)
|
42 |
|
43 |
def forward(self, text_input):
|
44 |
+
if not self.model or not self.tokenizer:
|
45 |
+
self.post_init()
|
46 |
+
|
47 |
if isinstance(text_input, str):
|
48 |
text_input = [text_input]
|
49 |
|
50 |
sequences = self.tokenizer.texts_to_sequences(text_input)
|
51 |
padded = pad_sequences(sequences, maxlen=self.config.max_length)
|
52 |
+
predictions = self.model.predict(padded, verbose=0)
|
53 |
|
54 |
results = []
|
55 |
for pred in predictions:
|
56 |
+
score = float(pred[1])
|
57 |
+
label = "foxnews" if score > 0.5 else "nbc"
|
58 |
results.append({
|
59 |
"label": label,
|
60 |
+
"score": score if label == "foxnews" else 1 - score
|
61 |
})
|
62 |
|
63 |
return results[0] if len(text_input) == 1 else results
|