Jiahuita
commited on
Commit
·
700431a
1
Parent(s):
5aafe28
Deleted app
Browse files- README.md +1 -2
- app.py +0 -84
- config.json +2 -2
- pipeline.py +41 -23
README.md
CHANGED
@@ -56,9 +56,8 @@ You can use this model directly with a FastAPI endpoint:
|
|
56 |
```python
|
57 |
import requests
|
58 |
|
59 |
-
# Make a prediction
|
60 |
response = requests.post(
|
61 |
-
"https://huggingface.co/Jiahuita/NewsSourceClassification
|
62 |
json={"text": "Your news headline here"}
|
63 |
)
|
64 |
print(response.json())
|
|
|
56 |
```python
|
57 |
import requests
|
58 |
|
|
|
59 |
response = requests.post(
|
60 |
+
"https://huggingface.co/Jiahuita/NewsSourceClassification",
|
61 |
json={"text": "Your news headline here"}
|
62 |
)
|
63 |
print(response.json())
|
app.py
DELETED
@@ -1,84 +0,0 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException
|
2 |
-
from pydantic import BaseModel
|
3 |
-
from transformers import Pipeline
|
4 |
-
import tensorflow as tf
|
5 |
-
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
6 |
-
import json
|
7 |
-
import os
|
8 |
-
|
9 |
-
class TextInput(BaseModel):
|
10 |
-
text: str
|
11 |
-
|
12 |
-
app = FastAPI(
|
13 |
-
title="News Source Classifier",
|
14 |
-
description="A model to classify news headlines as either Fox News or NBC News",
|
15 |
-
version="1.0.0"
|
16 |
-
)
|
17 |
-
|
18 |
-
class NewsClassificationPipeline(Pipeline):
|
19 |
-
def __init__(self):
|
20 |
-
super().__init__()
|
21 |
-
model_path = os.path.join(os.path.dirname(__file__), 'news_classifier.h5')
|
22 |
-
self.model = tf.keras.models.load_model(model_path)
|
23 |
-
|
24 |
-
tokenizer_path = os.path.join(os.path.dirname(__file__), 'tokenizer.json')
|
25 |
-
with open(tokenizer_path, 'r') as f:
|
26 |
-
tokenizer_data = json.load(f)
|
27 |
-
self.tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(tokenizer_data)
|
28 |
-
|
29 |
-
def __call__(self, text):
|
30 |
-
if isinstance(text, str):
|
31 |
-
text = [text]
|
32 |
-
|
33 |
-
sequences = self.tokenizer.texts_to_sequences(text)
|
34 |
-
padded = pad_sequences(sequences, maxlen=128)
|
35 |
-
|
36 |
-
predictions = self.model.predict(padded)
|
37 |
-
|
38 |
-
results = []
|
39 |
-
for pred in predictions:
|
40 |
-
label = "foxnews" if pred[0] > 0.5 else "nbc"
|
41 |
-
score = float(pred[0] if label == "foxnews" else 1 - pred[0])
|
42 |
-
results.append({"label": label, "score": score})
|
43 |
-
|
44 |
-
return results[0] if len(results) == 1 else results
|
45 |
-
|
46 |
-
try:
|
47 |
-
classifier = NewsClassificationPipeline()
|
48 |
-
except Exception as e:
|
49 |
-
print(f"Error initializing model: {str(e)}")
|
50 |
-
raise
|
51 |
-
|
52 |
-
@app.get("/")
|
53 |
-
async def root():
|
54 |
-
return {
|
55 |
-
"message": "News Source Classification API",
|
56 |
-
"usage": "Send POST request to /predict with {'text': 'your news headline'}"
|
57 |
-
}
|
58 |
-
|
59 |
-
@app.post("/predict")
|
60 |
-
async def predict(input_data: TextInput):
|
61 |
-
try:
|
62 |
-
result = classifier(input_data.text)
|
63 |
-
return result
|
64 |
-
except Exception as e:
|
65 |
-
raise HTTPException(status_code=500, detail=str(e))
|
66 |
-
|
67 |
-
@app.get("/examples")
|
68 |
-
async def examples():
|
69 |
-
return {
|
70 |
-
"examples": [
|
71 |
-
{
|
72 |
-
"title": "Crime News Headline",
|
73 |
-
"text": "Wife of murdered Minnesota pastor hired 3 men to kill husband after affair: police"
|
74 |
-
},
|
75 |
-
{
|
76 |
-
"title": "Science News Headline",
|
77 |
-
"text": "Scientists discover breakthrough in renewable energy research"
|
78 |
-
},
|
79 |
-
{
|
80 |
-
"title": "Political News Headline",
|
81 |
-
"text": "Presidential candidates face off in heated debate over climate policies"
|
82 |
-
}
|
83 |
-
]
|
84 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae409354ee5a0f6edfd67b5b838c072be95c352a1e1faca73a2473ee8ac15253
|
3 |
+
size 286
|
pipeline.py
CHANGED
@@ -1,35 +1,53 @@
|
|
1 |
-
from transformers import
|
2 |
-
|
|
|
3 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
|
|
4 |
import json
|
5 |
-
import os
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
super().__init__(**kwargs)
|
14 |
-
model_path = os.path.join(os.path.dirname(__file__), './news_classifier.h5')
|
15 |
-
self.model = tf.keras.models.load_model(model_path)
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
def __call__(self, texts, **kwargs):
|
21 |
-
if isinstance(texts, str):
|
22 |
-
texts = [texts]
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
predictions = self.model.predict(padded)
|
28 |
|
29 |
results = []
|
30 |
for pred in predictions:
|
31 |
label = "foxnews" if pred[0] > 0.5 else "nbc"
|
32 |
score = float(pred[0] if label == "foxnews" else 1 - pred[0])
|
33 |
-
results.append({
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
4 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
+
import numpy as np
|
6 |
import json
|
|
|
7 |
|
8 |
+
class NewsClassifierConfig(PretrainedConfig):
|
9 |
+
model_type = "news_classifier"
|
10 |
+
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
max_length=128,
|
14 |
+
vocab_size=10000,
|
15 |
+
hidden_size=64,
|
16 |
+
num_labels=2,
|
17 |
+
**kwargs
|
18 |
+
):
|
19 |
+
self.max_length = max_length
|
20 |
+
self.vocab_size = vocab_size
|
21 |
+
self.hidden_size = hidden_size
|
22 |
+
self.num_labels = num_labels
|
23 |
super().__init__(**kwargs)
|
|
|
|
|
24 |
|
25 |
+
class NewsClassifier(PreTrainedModel):
|
26 |
+
config_class = NewsClassifierConfig
|
27 |
+
base_model_prefix = "news_classifier"
|
|
|
|
|
|
|
28 |
|
29 |
+
def __init__(self, config):
|
30 |
+
super().__init__(config)
|
31 |
+
self.model = load_model('news_classifier.h5')
|
32 |
+
with open('tokenizer.json', 'r') as f:
|
33 |
+
tokenizer_data = json.load(f)
|
34 |
+
self.tokenizer = tokenizer_from_json(tokenizer_data)
|
35 |
+
|
36 |
+
def forward(self, text_input):
|
37 |
+
if isinstance(text_input, str):
|
38 |
+
text_input = [text_input]
|
39 |
+
|
40 |
+
sequences = self.tokenizer.texts_to_sequences(text_input)
|
41 |
+
padded = pad_sequences(sequences, maxlen=self.config.max_length)
|
42 |
predictions = self.model.predict(padded)
|
43 |
|
44 |
results = []
|
45 |
for pred in predictions:
|
46 |
label = "foxnews" if pred[0] > 0.5 else "nbc"
|
47 |
score = float(pred[0] if label == "foxnews" else 1 - pred[0])
|
48 |
+
results.append({
|
49 |
+
"label": label,
|
50 |
+
"score": score
|
51 |
+
})
|
52 |
+
|
53 |
+
return results[0] if len(text_input) == 1 else results
|