Jiahuita
commited on
Commit
·
5aafe28
1
Parent(s):
8cc42bc
Modified app and readme
Browse files
README.md
CHANGED
@@ -56,8 +56,43 @@ You can use this model directly with a FastAPI endpoint:
|
|
56 |
```python
|
57 |
import requests
|
58 |
|
|
|
59 |
response = requests.post(
|
60 |
-
"https://huggingface.co/Jiahuita/NewsSourceClassification",
|
61 |
json={"text": "Your news headline here"}
|
62 |
)
|
63 |
-
print(response.json())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
```python
|
57 |
import requests
|
58 |
|
59 |
+
# Make a prediction
|
60 |
response = requests.post(
|
61 |
+
"https://huggingface.co/Jiahuita/NewsSourceClassification/predict",
|
62 |
json={"text": "Your news headline here"}
|
63 |
)
|
64 |
+
print(response.json())
|
65 |
+
```
|
66 |
+
|
67 |
+
Or use it locally:
|
68 |
+
|
69 |
+
```python
|
70 |
+
from transformers import pipeline
|
71 |
+
|
72 |
+
classifier = pipeline("text-classification", model="Jiahuita/NewsSourceClassification")
|
73 |
+
result = classifier("Your news headline here")
|
74 |
+
print(result)
|
75 |
+
```
|
76 |
+
|
77 |
+
Example response:
|
78 |
+
```json
|
79 |
+
{
|
80 |
+
"label": "foxnews",
|
81 |
+
"score": 0.875
|
82 |
+
}
|
83 |
+
```
|
84 |
+
|
85 |
+
## Limitations and Bias
|
86 |
+
|
87 |
+
This model has been trained on news headlines from specific sources and time periods, which may introduce certain biases. Users should be aware of these limitations when using the model.
|
88 |
+
|
89 |
+
## Training
|
90 |
+
|
91 |
+
The model was trained using:
|
92 |
+
- TensorFlow 2.13.0
|
93 |
+
- LSTM architecture
|
94 |
+
- Binary cross-entropy loss
|
95 |
+
- Adam optimizer
|
96 |
+
|
97 |
+
## License
|
98 |
+
This project is licensed under the MIT License.
|
app.py
CHANGED
@@ -1,15 +1,84 @@
|
|
1 |
-
from
|
2 |
-
from fastapi import FastAPI
|
3 |
from pydantic import BaseModel
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
6 |
|
7 |
class TextInput(BaseModel):
|
8 |
text: str
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
@app.post("/predict")
|
13 |
async def predict(input_data: TextInput):
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
|
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import Pipeline
|
4 |
+
import tensorflow as tf
|
5 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
6 |
+
import json
|
7 |
+
import os
|
8 |
|
9 |
class TextInput(BaseModel):
|
10 |
text: str
|
11 |
|
12 |
+
app = FastAPI(
|
13 |
+
title="News Source Classifier",
|
14 |
+
description="A model to classify news headlines as either Fox News or NBC News",
|
15 |
+
version="1.0.0"
|
16 |
+
)
|
17 |
+
|
18 |
+
class NewsClassificationPipeline(Pipeline):
|
19 |
+
def __init__(self):
|
20 |
+
super().__init__()
|
21 |
+
model_path = os.path.join(os.path.dirname(__file__), 'news_classifier.h5')
|
22 |
+
self.model = tf.keras.models.load_model(model_path)
|
23 |
+
|
24 |
+
tokenizer_path = os.path.join(os.path.dirname(__file__), 'tokenizer.json')
|
25 |
+
with open(tokenizer_path, 'r') as f:
|
26 |
+
tokenizer_data = json.load(f)
|
27 |
+
self.tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(tokenizer_data)
|
28 |
+
|
29 |
+
def __call__(self, text):
|
30 |
+
if isinstance(text, str):
|
31 |
+
text = [text]
|
32 |
+
|
33 |
+
sequences = self.tokenizer.texts_to_sequences(text)
|
34 |
+
padded = pad_sequences(sequences, maxlen=128)
|
35 |
+
|
36 |
+
predictions = self.model.predict(padded)
|
37 |
+
|
38 |
+
results = []
|
39 |
+
for pred in predictions:
|
40 |
+
label = "foxnews" if pred[0] > 0.5 else "nbc"
|
41 |
+
score = float(pred[0] if label == "foxnews" else 1 - pred[0])
|
42 |
+
results.append({"label": label, "score": score})
|
43 |
+
|
44 |
+
return results[0] if len(results) == 1 else results
|
45 |
+
|
46 |
+
try:
|
47 |
+
classifier = NewsClassificationPipeline()
|
48 |
+
except Exception as e:
|
49 |
+
print(f"Error initializing model: {str(e)}")
|
50 |
+
raise
|
51 |
+
|
52 |
+
@app.get("/")
|
53 |
+
async def root():
|
54 |
+
return {
|
55 |
+
"message": "News Source Classification API",
|
56 |
+
"usage": "Send POST request to /predict with {'text': 'your news headline'}"
|
57 |
+
}
|
58 |
|
59 |
@app.post("/predict")
|
60 |
async def predict(input_data: TextInput):
|
61 |
+
try:
|
62 |
+
result = classifier(input_data.text)
|
63 |
+
return result
|
64 |
+
except Exception as e:
|
65 |
+
raise HTTPException(status_code=500, detail=str(e))
|
66 |
+
|
67 |
+
@app.get("/examples")
|
68 |
+
async def examples():
|
69 |
+
return {
|
70 |
+
"examples": [
|
71 |
+
{
|
72 |
+
"title": "Crime News Headline",
|
73 |
+
"text": "Wife of murdered Minnesota pastor hired 3 men to kill husband after affair: police"
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"title": "Science News Headline",
|
77 |
+
"text": "Scientists discover breakthrough in renewable energy research"
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"title": "Political News Headline",
|
81 |
+
"text": "Presidential candidates face off in heated debate over climate policies"
|
82 |
+
}
|
83 |
+
]
|
84 |
+
}
|