Titovs jdev8 commited on
Commit
ed06d90
·
verified ·
1 Parent(s): d296637

Update README.md (#1)

Browse files

- Update README.md (3caeca663414162e324c19b521d1902a4b3608d7)


Co-authored-by: Anton Shapkin <jdev8@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +92 -3
README.md CHANGED
@@ -1,3 +1,92 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - JetBrains/KExercises
5
+ base_model: deepseek-ai/deepseek-coder-6.7b-base
6
+ results:
7
+ - task:
8
+ type: text-generation
9
+ dataset:
10
+ name: MultiPL-HumanEval (Kotlin)
11
+ type: openai_humaneval
12
+ metrics:
13
+ - name: pass@1
14
+ type: pass@1
15
+ value: 55.28
16
+ tags:
17
+ - code
18
+ ---
19
+
20
+ # Kexer models
21
+
22
+ Kexer models is a collection of fine-tuned open-source generative text models fine-tuned on Kotlin Exercices dataset.
23
+ This is a repository for fine-tuned Deepseek-coder-6.7b model in the Hugging Face Transformers format.
24
+
25
+ # Model use
26
+
27
+ ```python
28
+ from transformers import AutoModelForCausalLM, AutoTokenizer
29
+
30
+ # Load pre-trained model and tokenizer
31
+ model_name = 'JetBrains/Deepseek-7B-Kexer'
32
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
33
+ model = AutoModelForCausalLM.from_pretrained(model_name).to('cuda')
34
+
35
+ # Create and encode input
36
+ input_text = """\
37
+ This function takes an integer n and returns factorial of a number:
38
+ fun factorial(n: Int): Int {\
39
+ """
40
+ input_ids = tokenizer.encode(
41
+ input_text, return_tensors='pt'
42
+ ).to('cuda')
43
+
44
+ # Generate
45
+ output = model.generate(
46
+ input_ids, max_length=60, num_return_sequences=1,
47
+ early_stopping=True, pad_token_id=tokenizer.eos_token_id,
48
+ )
49
+
50
+ # Decode output
51
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
52
+ print(generated_text)
53
+ ```
54
+
55
+ As with the base model, we can use FIM. To do this, the following format must be used:
56
+ ```
57
+ '<|fim▁begin|>' + prefix + '<|fim▁hole|>' + suffix + '<|fim▁end|>'
58
+ ```
59
+
60
+ # Training setup
61
+
62
+ The model was trained on one A100 GPU with following hyperparameters:
63
+
64
+ | **Hyperparameter** | **Value** |
65
+ |:---------------------------:|:----------------------------------------:|
66
+ | `warmup` | 10% |
67
+ | `max_lr` | 1e-4 |
68
+ | `scheduler` | linear |
69
+ | `total_batch_size` | 256 (~130K tokens per step) |
70
+ | `num_epochs` | 4 |
71
+
72
+ More details about finetuning can be found in the technical report
73
+
74
+ # Fine-tuning data
75
+
76
+ For this model we used 15K exmaples of [Kotlin Exercices dataset](https://huggingface.co/datasets/JetBrains/KExercises). Every example follows HumanEval like format. In total dataset contains about 3.5M tokens.
77
+ For more information about the dataset follow the link.
78
+
79
+ # Evaluation
80
+
81
+ To evaluate we used Kotlin Humaneval ([more infromation here](https://huggingface.co/datasets/JetBrains/Kotlin_HumanEval))
82
+
83
+ Fine-tuned model:
84
+
85
+ | **Model name** | **Kotlin HumanEval Pass Rate** |
86
+ |:---------------------------:|:----------------------------------------:|
87
+ | `base model` | 40.99 |
88
+ | `fine-tuned model` | 55.28 |
89
+
90
+ # Ethical Considerations and Limitations
91
+
92
+ Deepseek and its variants are a new technology that carries risks with use. The testing conducted to date could not cover all scenarios. For these reasons, as with all LLMs, Kexer's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. The model was fine-tuned on a specific data format (Kotlin tasks), and deviation from this format can also lead to inaccurate or undesirable responses to user queries. Therefore, before deploying any applications of Kexer, developers should perform safety testing and tuning tailored to their specific applications of the model.