ppo-LunarLander-v2 / config.json
Jekol's picture
Upload PPO LunarLander-v2 trained agent
d15730b verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c0cd76d8d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c0cd76d8dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c0cd76d8e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c0cd76d8ee0>", "_build": "<function ActorCriticPolicy._build at 0x7c0cd76d8f70>", "forward": "<function ActorCriticPolicy.forward at 0x7c0cd76d9000>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c0cd76d9090>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c0cd76d9120>", "_predict": "<function ActorCriticPolicy._predict at 0x7c0cd76d91b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c0cd76d9240>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c0cd76d92d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c0cd76d9360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c0cd7875800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718795764473231488, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACAdEL72Xxs7MvOaPQUZZbtYSZu8Xr5LPAAAgD8AAIA/RvI+vntypry/ww66cC1JuPq5Dz57STg5AACAPwAAgD/zMk4+W3HxvMmoDjv/4525YaNTvpYYQboAAIA/AACAPwNmnz68rYA+oElxvjPqtr4UGoQ9IaTFvQAAAAAAAAAARoFOvg0ELj8Sdie+RshJv5cSHL44Oes8AAAAAAAAAADGfHS+HB8nvC45Mj6SNa28eNodPQlmyzwAAIA/AACAP4Av573of0o//wk6vs0MNb912829WS8HvQAAAAAAAAAAXff8PqYVOj+6xVg+4kw3vyno4T7mW4E8AAAAAAAAAACaLUm8A5QRP6DICT0ErTa/jR6/PCgrlD0AAAAAAAAAAGaq8DyP5m66uf8etpr5Hq4dkI+7Q3RDNQAAgD8AAIA/MxoYPY82E7riQlu9txwXMwY8rjouPh+zAACAPwAAgD9aYDK+G9JTP0jzib5dmUe/LkkPvotR27wAAAAAAAAAAOZTtL32aHa4g9U3Pi1riLhqQBe6CJ+OtwAAgD8AAAAAM7DAPY9MqT9waBw/I6vkvkcOZD3goP09AAAAAAAAAADzTZk99qRVuqpK5zbhdJm2VbOuO0VIybUAAIA/AACAP5puPL40FZm8icKEOHzqsrbhFBM+8q2WtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8tp5E+gUWMAWyUS7GMAXSUR0CW4CJv5xiodX2UKGgGR0BxpxFvybx3aAdLxWgIR0CW4C1YQrc1dX2UKGgGR0BzWSofjjrBaAdL5WgIR0CW4JMLWqcWdX2UKGgGR0ByJchouf29aAdNpAFoCEdAluGWrn1WbXV9lChoBkdAckoAU+LWJGgHS/NoCEdAluRGOMl1KXV9lChoBkdAcVRPNmlImWgHS5poCEdAluYhZuAI6nV9lChoBkdAcDwS2H+IdmgHS7NoCEdAlue91QqI8HV9lChoBkdAcgksjFAE+2gHS8RoCEdAluf2wFC9iHV9lChoBkdAcJ6bgTAWSGgHTRQBaAhHQJboWX3QD3d1fZQoaAZHQGJCWW6bvw5oB03oA2gIR0CW6Jh6jWTYdX2UKGgGR0BxVe2JBPbgaAdL0GgIR0CW6eld1MdtdX2UKGgGR0BjhlkvsZ5zaAdN6ANoCEdAluo2uHN5dHV9lChoBkdAcvZV81Gb1GgHTQQBaAhHQJbqgCnxaxJ1fZQoaAZHQG+Awj2SMcZoB0uzaAhHQJbs9LCemN11fZQoaAZHQHHJ0QTVUddoB0uOaAhHQJbt0Sf16E91fZQoaAZHQHJBqfSQYDVoB00JAWgIR0CW7pPCVKPGdX2UKGgGR0BiBkCHRCyAaAdN6ANoCEdAlu86PwNLDnV9lChoBkdAcXSGJvYOD2gHS/VoCEdAlvElX/5tWXV9lChoBkdAcWd238XN1WgHS/doCEdAlvGPdhy8z3V9lChoBkdAc0vv4/NZ/2gHTQgBaAhHQJbxqqaPS2J1fZQoaAZHQGKL6Ae7tiRoB03oA2gIR0CW8k81XNkfdX2UKGgGR0Bw29A9mpVCaAdL52gIR0CW8nFd9lVcdX2UKGgGR0BxHFYigTRIaAdL4GgIR0CW8r2v0RODdX2UKGgGR0Bwfj4UN8VpaAdLrGgIR0CW8/t4zJp4dX2UKGgGR0BkPUxASnLraAdN6ANoCEdAlvQlbRneznV9lChoBkdAcpwQzk6tDGgHS85oCEdAlvRclLOAy3V9lChoBkdAcpUgccU/OmgHS6poCEdAlvSF90A93nV9lChoBkdAcAgJP69CeGgHS7poCEdAlvV9MK1G9nV9lChoBkdAcLWHryDqW2gHS8BoCEdAlvdGUjcEeXV9lChoBkdAb8enDziCKGgHS7hoCEdAlvd4Qz1scnV9lChoBkdAcRo6NVBD5WgHS8doCEdAlvfpaV2RrHV9lChoBkdAcVzKEnLJS2gHS8VoCEdAlvlNdeIEbHV9lChoBkdAcSCUD+zdDmgHS85oCEdAlvlNyDIzWXV9lChoBkdAcCdaxX4j8mgHS7VoCEdAlvpjM7lq8HV9lChoBkdAcDLknTiKi2gHS7JoCEdAlvp7S7Xg+HV9lChoBkdAcCkqhlDneWgHS7ZoCEdAlvtC1iONpHV9lChoBkdAb5GVCXyAhGgHS75oCEdAlvtaA4GUwHV9lChoBkdAcZxqwyIpIGgHS6VoCEdAlvvs9Oh0yXV9lChoBkdAZgtxKg7HQ2gHTegDaAhHQJb8InSfDk51fZQoaAZHQGRqh1LamGdoB03oA2gIR0CW/cJnxri3dX2UKGgGR0BjtIcxTKkmaAdN6ANoCEdAlv//CMxXXHV9lChoBkdAcc337k4m1WgHS8doCEdAlwAK94/u9nV9lChoBkdAcBxhlDneSGgHS6NoCEdAlwFM3ZPEbnV9lChoBkdAcA/KHwgDBGgHS6NoCEdAlwFjTnaFmHV9lChoBkdAcEf8mrsByWgHS85oCEdAlwIGITGo73V9lChoBkdAcdqu6VdHD2gHS/RoCEdAlwJM0gr6L3V9lChoBkdAcfG3/xUedWgHS9loCEdAlwJ/XsgMdHV9lChoBkdAbq0rFwT/Q2gHS6toCEdAlwL7QgLZz3V9lChoBkdAcVBSFXaJymgHS7poCEdAlwMIu9OARXV9lChoBkdAcbB4H5aePWgHS69oCEdAlwNOlKsdUHV9lChoBkdAbFulEZzgdmgHS/loCEdAlwVShnJ1aHV9lChoBkdAYpwe/5+H8GgHTegDaAhHQJcF1zBAOax1fZQoaAZHQHAaDqnm7rdoB0vaaAhHQJcGGj4593N1fZQoaAZHQG/6JPIn0CloB0uwaAhHQJcHNDUmUnp1fZQoaAZHQG7LsoMKCxxoB0utaAhHQJcH2Z8a4tp1fZQoaAZHQG/Hw6ZH/cZoB0vHaAhHQJcH7Ai3XqZ1fZQoaAZHQHH+DOLR8dBoB00PAWgIR0CXCQzJ6po9dX2UKGgGR0Bw3ZjSXt0FaAdLzWgIR0CXCU9jwx33dX2UKGgGR0BxVFUwSJ0oaAdL8WgIR0CXCayhSLqEdX2UKGgGR0BxSELYwqRVaAdL4WgIR0CXCiyprDZUdX2UKGgGR0BwbcWHk92YaAdLvGgIR0CXCqOSntOVdX2UKGgGR0Bwar1xsEaEaAdLsmgIR0CXC055qubJdX2UKGgGR0ByC/2saKk3aAdL22gIR0CXDD1AZ88cdX2UKGgGR0BxsX0Gu9vkaAdLyWgIR0CXDWQuEmICdX2UKGgGR0BjfDeANG3GaAdN6ANoCEdAlw2eYc/+sHV9lChoBkdAcTuVi4J/omgHS9hoCEdAlw6c89wFT3V9lChoBkdAcKSyoGY8dWgHS5RoCEdAlw72Q0XP7nV9lChoBkdAbXDCCSRr8GgHTd0BaAhHQJcPnibUgB91fZQoaAZHQHDKIi1RceNoB0vVaAhHQJcP3+GXXy11fZQoaAZHQHMsUJOWSlpoB00SAWgIR0CXEJM4cWCVdX2UKGgGR0BwNvR/mT1TaAdLtmgIR0CXEk0163RYdX2UKGgGR0BxhMr4FiazaAdNHwFoCEdAlxKtU83dbnV9lChoBkdAcWwkDIRywWgHS+NoCEdAlxLQb+98JHV9lChoBkdAclcLApKBd2gHTS8BaAhHQJcUwBS1map1fZQoaAZHQGKunmJWNm1oB03oA2gIR0CXFQC1qnFYdX2UKGgGR0ByLGEf1YhdaAdLwGgIR0CXFSTwlSjydX2UKGgGR0BxolLXcxj8aAdLtWgIR0CXFcaNuLrHdX2UKGgGR0BwSGF9KEnLaAdLrWgIR0CXFcYAKfFrdX2UKGgGR0ByRSxD9fkWaAdNAgFoCEdAlxZIuCf6GnV9lChoBkdAcWFcPe54GGgHTQsBaAhHQJcWW19fCyh1fZQoaAZHQHAtUYfnwG5oB0uZaAhHQJcXcyYXwb51fZQoaAZHQHB+MJx//edoB0vUaAhHQJcXyWBz3h51fZQoaAZHQHKQAJb+tKZoB00WAWgIR0CXGFCZWq95dX2UKGgGR0ByJxTNt65YaAdLq2gIR0CXGIjLSuyNdX2UKGgGR0BwxaHWSU1RaAdLkmgIR0CXGY/UvwmWdX2UKGgGR0BxzlAVwgkkaAdL1WgIR0CXGcH4oJAudX2UKGgGR0Bm0id4FA3UaAdN6ANoCEdAlxpC/9Hc13V9lChoBkdAchWJ1q33H2gHS5JoCEdAlxqD81n/UHV9lChoBkdAcLr4J/oaDWgHS51oCEdAlxrYMz/IbXV9lChoBkdAcPDgvlEJB2gHS5VoCEdAlxsW3z+WGHV9lChoBkdAcAcNZeRgZ2gHS8hoCEdAlxt9X1anrXV9lChoBkdAcFgIE8q4IGgHS7FoCEdAlx0c2m51/3V9lChoBkdAcwZtga3qiWgHS+hoCEdAlx3aoZQ53nV9lChoBkdAbebpwCKaX2gHS75oCEdAlx3lb7j1f3V9lChoBkdAcEtlkYoAn2gHS9JoCEdAlx9+Mhouf3V9lChoBkdAceCThYNiIGgHTUYBaAhHQJcf9oIv8Il1fZQoaAZHQHD1O2y9mHxoB0unaAhHQJcgLGtITXd1fZQoaAZHQHDT7bHp8nhoB0vLaAhHQJcglcmjTKF1fZQoaAZHQHGm5Y5ksjFoB00AAWgIR0CXINydWhh6dX2UKGgGR0BwzpwEQoTgaAdLtWgIR0CXIaldTo+wdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}