Jekol commited on
Commit
d15730b
1 Parent(s): 96327fd

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 235.35 +/- 73.71
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c0cd76d8d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c0cd76d8dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c0cd76d8e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c0cd76d8ee0>", "_build": "<function ActorCriticPolicy._build at 0x7c0cd76d8f70>", "forward": "<function ActorCriticPolicy.forward at 0x7c0cd76d9000>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c0cd76d9090>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c0cd76d9120>", "_predict": "<function ActorCriticPolicy._predict at 0x7c0cd76d91b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c0cd76d9240>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c0cd76d92d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c0cd76d9360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c0cd7875800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718795764473231488, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACAdEL72Xxs7MvOaPQUZZbtYSZu8Xr5LPAAAgD8AAIA/RvI+vntypry/ww66cC1JuPq5Dz57STg5AACAPwAAgD/zMk4+W3HxvMmoDjv/4525YaNTvpYYQboAAIA/AACAPwNmnz68rYA+oElxvjPqtr4UGoQ9IaTFvQAAAAAAAAAARoFOvg0ELj8Sdie+RshJv5cSHL44Oes8AAAAAAAAAADGfHS+HB8nvC45Mj6SNa28eNodPQlmyzwAAIA/AACAP4Av573of0o//wk6vs0MNb912829WS8HvQAAAAAAAAAAXff8PqYVOj+6xVg+4kw3vyno4T7mW4E8AAAAAAAAAACaLUm8A5QRP6DICT0ErTa/jR6/PCgrlD0AAAAAAAAAAGaq8DyP5m66uf8etpr5Hq4dkI+7Q3RDNQAAgD8AAIA/MxoYPY82E7riQlu9txwXMwY8rjouPh+zAACAPwAAgD9aYDK+G9JTP0jzib5dmUe/LkkPvotR27wAAAAAAAAAAOZTtL32aHa4g9U3Pi1riLhqQBe6CJ+OtwAAgD8AAAAAM7DAPY9MqT9waBw/I6vkvkcOZD3goP09AAAAAAAAAADzTZk99qRVuqpK5zbhdJm2VbOuO0VIybUAAIA/AACAP5puPL40FZm8icKEOHzqsrbhFBM+8q2WtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8tp5E+gUWMAWyUS7GMAXSUR0CW4CJv5xiodX2UKGgGR0BxpxFvybx3aAdLxWgIR0CW4C1YQrc1dX2UKGgGR0BzWSofjjrBaAdL5WgIR0CW4JMLWqcWdX2UKGgGR0ByJchouf29aAdNpAFoCEdAluGWrn1WbXV9lChoBkdAckoAU+LWJGgHS/NoCEdAluRGOMl1KXV9lChoBkdAcVRPNmlImWgHS5poCEdAluYhZuAI6nV9lChoBkdAcDwS2H+IdmgHS7NoCEdAlue91QqI8HV9lChoBkdAcgksjFAE+2gHS8RoCEdAluf2wFC9iHV9lChoBkdAcJ6bgTAWSGgHTRQBaAhHQJboWX3QD3d1fZQoaAZHQGJCWW6bvw5oB03oA2gIR0CW6Jh6jWTYdX2UKGgGR0BxVe2JBPbgaAdL0GgIR0CW6eld1MdtdX2UKGgGR0BjhlkvsZ5zaAdN6ANoCEdAluo2uHN5dHV9lChoBkdAcvZV81Gb1GgHTQQBaAhHQJbqgCnxaxJ1fZQoaAZHQG+Awj2SMcZoB0uzaAhHQJbs9LCemN11fZQoaAZHQHHJ0QTVUddoB0uOaAhHQJbt0Sf16E91fZQoaAZHQHJBqfSQYDVoB00JAWgIR0CW7pPCVKPGdX2UKGgGR0BiBkCHRCyAaAdN6ANoCEdAlu86PwNLDnV9lChoBkdAcXSGJvYOD2gHS/VoCEdAlvElX/5tWXV9lChoBkdAcWd238XN1WgHS/doCEdAlvGPdhy8z3V9lChoBkdAc0vv4/NZ/2gHTQgBaAhHQJbxqqaPS2J1fZQoaAZHQGKL6Ae7tiRoB03oA2gIR0CW8k81XNkfdX2UKGgGR0Bw29A9mpVCaAdL52gIR0CW8nFd9lVcdX2UKGgGR0BxHFYigTRIaAdL4GgIR0CW8r2v0RODdX2UKGgGR0Bwfj4UN8VpaAdLrGgIR0CW8/t4zJp4dX2UKGgGR0BkPUxASnLraAdN6ANoCEdAlvQlbRneznV9lChoBkdAcpwQzk6tDGgHS85oCEdAlvRclLOAy3V9lChoBkdAcpUgccU/OmgHS6poCEdAlvSF90A93nV9lChoBkdAcAgJP69CeGgHS7poCEdAlvV9MK1G9nV9lChoBkdAcLWHryDqW2gHS8BoCEdAlvdGUjcEeXV9lChoBkdAb8enDziCKGgHS7hoCEdAlvd4Qz1scnV9lChoBkdAcRo6NVBD5WgHS8doCEdAlvfpaV2RrHV9lChoBkdAcVzKEnLJS2gHS8VoCEdAlvlNdeIEbHV9lChoBkdAcSCUD+zdDmgHS85oCEdAlvlNyDIzWXV9lChoBkdAcCdaxX4j8mgHS7VoCEdAlvpjM7lq8HV9lChoBkdAcDLknTiKi2gHS7JoCEdAlvp7S7Xg+HV9lChoBkdAcCkqhlDneWgHS7ZoCEdAlvtC1iONpHV9lChoBkdAb5GVCXyAhGgHS75oCEdAlvtaA4GUwHV9lChoBkdAcZxqwyIpIGgHS6VoCEdAlvvs9Oh0yXV9lChoBkdAZgtxKg7HQ2gHTegDaAhHQJb8InSfDk51fZQoaAZHQGRqh1LamGdoB03oA2gIR0CW/cJnxri3dX2UKGgGR0BjtIcxTKkmaAdN6ANoCEdAlv//CMxXXHV9lChoBkdAcc337k4m1WgHS8doCEdAlwAK94/u9nV9lChoBkdAcBxhlDneSGgHS6NoCEdAlwFM3ZPEbnV9lChoBkdAcA/KHwgDBGgHS6NoCEdAlwFjTnaFmHV9lChoBkdAcEf8mrsByWgHS85oCEdAlwIGITGo73V9lChoBkdAcdqu6VdHD2gHS/RoCEdAlwJM0gr6L3V9lChoBkdAcfG3/xUedWgHS9loCEdAlwJ/XsgMdHV9lChoBkdAbq0rFwT/Q2gHS6toCEdAlwL7QgLZz3V9lChoBkdAcVBSFXaJymgHS7poCEdAlwMIu9OARXV9lChoBkdAcbB4H5aePWgHS69oCEdAlwNOlKsdUHV9lChoBkdAbFulEZzgdmgHS/loCEdAlwVShnJ1aHV9lChoBkdAYpwe/5+H8GgHTegDaAhHQJcF1zBAOax1fZQoaAZHQHAaDqnm7rdoB0vaaAhHQJcGGj4593N1fZQoaAZHQG/6JPIn0CloB0uwaAhHQJcHNDUmUnp1fZQoaAZHQG7LsoMKCxxoB0utaAhHQJcH2Z8a4tp1fZQoaAZHQG/Hw6ZH/cZoB0vHaAhHQJcH7Ai3XqZ1fZQoaAZHQHH+DOLR8dBoB00PAWgIR0CXCQzJ6po9dX2UKGgGR0Bw3ZjSXt0FaAdLzWgIR0CXCU9jwx33dX2UKGgGR0BxVFUwSJ0oaAdL8WgIR0CXCayhSLqEdX2UKGgGR0BxSELYwqRVaAdL4WgIR0CXCiyprDZUdX2UKGgGR0BwbcWHk92YaAdLvGgIR0CXCqOSntOVdX2UKGgGR0Bwar1xsEaEaAdLsmgIR0CXC055qubJdX2UKGgGR0ByC/2saKk3aAdL22gIR0CXDD1AZ88cdX2UKGgGR0BxsX0Gu9vkaAdLyWgIR0CXDWQuEmICdX2UKGgGR0BjfDeANG3GaAdN6ANoCEdAlw2eYc/+sHV9lChoBkdAcTuVi4J/omgHS9hoCEdAlw6c89wFT3V9lChoBkdAcKSyoGY8dWgHS5RoCEdAlw72Q0XP7nV9lChoBkdAbXDCCSRr8GgHTd0BaAhHQJcPnibUgB91fZQoaAZHQHDKIi1RceNoB0vVaAhHQJcP3+GXXy11fZQoaAZHQHMsUJOWSlpoB00SAWgIR0CXEJM4cWCVdX2UKGgGR0BwNvR/mT1TaAdLtmgIR0CXEk0163RYdX2UKGgGR0BxhMr4FiazaAdNHwFoCEdAlxKtU83dbnV9lChoBkdAcWwkDIRywWgHS+NoCEdAlxLQb+98JHV9lChoBkdAclcLApKBd2gHTS8BaAhHQJcUwBS1map1fZQoaAZHQGKunmJWNm1oB03oA2gIR0CXFQC1qnFYdX2UKGgGR0ByLGEf1YhdaAdLwGgIR0CXFSTwlSjydX2UKGgGR0BxolLXcxj8aAdLtWgIR0CXFcaNuLrHdX2UKGgGR0BwSGF9KEnLaAdLrWgIR0CXFcYAKfFrdX2UKGgGR0ByRSxD9fkWaAdNAgFoCEdAlxZIuCf6GnV9lChoBkdAcWFcPe54GGgHTQsBaAhHQJcWW19fCyh1fZQoaAZHQHAtUYfnwG5oB0uZaAhHQJcXcyYXwb51fZQoaAZHQHB+MJx//edoB0vUaAhHQJcXyWBz3h51fZQoaAZHQHKQAJb+tKZoB00WAWgIR0CXGFCZWq95dX2UKGgGR0ByJxTNt65YaAdLq2gIR0CXGIjLSuyNdX2UKGgGR0BwxaHWSU1RaAdLkmgIR0CXGY/UvwmWdX2UKGgGR0BxzlAVwgkkaAdL1WgIR0CXGcH4oJAudX2UKGgGR0Bm0id4FA3UaAdN6ANoCEdAlxpC/9Hc13V9lChoBkdAchWJ1q33H2gHS5JoCEdAlxqD81n/UHV9lChoBkdAcLr4J/oaDWgHS51oCEdAlxrYMz/IbXV9lChoBkdAcPDgvlEJB2gHS5VoCEdAlxsW3z+WGHV9lChoBkdAcAcNZeRgZ2gHS8hoCEdAlxt9X1anrXV9lChoBkdAcFgIE8q4IGgHS7FoCEdAlx0c2m51/3V9lChoBkdAcwZtga3qiWgHS+hoCEdAlx3aoZQ53nV9lChoBkdAbebpwCKaX2gHS75oCEdAlx3lb7j1f3V9lChoBkdAcEtlkYoAn2gHS9JoCEdAlx9+Mhouf3V9lChoBkdAceCThYNiIGgHTUYBaAhHQJcf9oIv8Il1fZQoaAZHQHD1O2y9mHxoB0unaAhHQJcgLGtITXd1fZQoaAZHQHDT7bHp8nhoB0vLaAhHQJcglcmjTKF1fZQoaAZHQHGm5Y5ksjFoB00AAWgIR0CXINydWhh6dX2UKGgGR0BwzpwEQoTgaAdLtWgIR0CXIaldTo+wdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a660ec091c0d94636cd551da6b35874886bd5255589565defa2e26d7919dcf3
3
+ size 147987
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c0cd76d8d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c0cd76d8dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c0cd76d8e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c0cd76d8ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c0cd76d8f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c0cd76d9000>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c0cd76d9090>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c0cd76d9120>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c0cd76d91b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c0cd76d9240>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c0cd76d92d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c0cd76d9360>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c0cd7875800>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1718795764473231488,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACAdEL72Xxs7MvOaPQUZZbtYSZu8Xr5LPAAAgD8AAIA/RvI+vntypry/ww66cC1JuPq5Dz57STg5AACAPwAAgD/zMk4+W3HxvMmoDjv/4525YaNTvpYYQboAAIA/AACAPwNmnz68rYA+oElxvjPqtr4UGoQ9IaTFvQAAAAAAAAAARoFOvg0ELj8Sdie+RshJv5cSHL44Oes8AAAAAAAAAADGfHS+HB8nvC45Mj6SNa28eNodPQlmyzwAAIA/AACAP4Av573of0o//wk6vs0MNb912829WS8HvQAAAAAAAAAAXff8PqYVOj+6xVg+4kw3vyno4T7mW4E8AAAAAAAAAACaLUm8A5QRP6DICT0ErTa/jR6/PCgrlD0AAAAAAAAAAGaq8DyP5m66uf8etpr5Hq4dkI+7Q3RDNQAAgD8AAIA/MxoYPY82E7riQlu9txwXMwY8rjouPh+zAACAPwAAgD9aYDK+G9JTP0jzib5dmUe/LkkPvotR27wAAAAAAAAAAOZTtL32aHa4g9U3Pi1riLhqQBe6CJ+OtwAAgD8AAAAAM7DAPY9MqT9waBw/I6vkvkcOZD3goP09AAAAAAAAAADzTZk99qRVuqpK5zbhdJm2VbOuO0VIybUAAIA/AACAP5puPL40FZm8icKEOHzqsrbhFBM+8q2WtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV+wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8tp5E+gUWMAWyUS7GMAXSUR0CW4CJv5xiodX2UKGgGR0BxpxFvybx3aAdLxWgIR0CW4C1YQrc1dX2UKGgGR0BzWSofjjrBaAdL5WgIR0CW4JMLWqcWdX2UKGgGR0ByJchouf29aAdNpAFoCEdAluGWrn1WbXV9lChoBkdAckoAU+LWJGgHS/NoCEdAluRGOMl1KXV9lChoBkdAcVRPNmlImWgHS5poCEdAluYhZuAI6nV9lChoBkdAcDwS2H+IdmgHS7NoCEdAlue91QqI8HV9lChoBkdAcgksjFAE+2gHS8RoCEdAluf2wFC9iHV9lChoBkdAcJ6bgTAWSGgHTRQBaAhHQJboWX3QD3d1fZQoaAZHQGJCWW6bvw5oB03oA2gIR0CW6Jh6jWTYdX2UKGgGR0BxVe2JBPbgaAdL0GgIR0CW6eld1MdtdX2UKGgGR0BjhlkvsZ5zaAdN6ANoCEdAluo2uHN5dHV9lChoBkdAcvZV81Gb1GgHTQQBaAhHQJbqgCnxaxJ1fZQoaAZHQG+Awj2SMcZoB0uzaAhHQJbs9LCemN11fZQoaAZHQHHJ0QTVUddoB0uOaAhHQJbt0Sf16E91fZQoaAZHQHJBqfSQYDVoB00JAWgIR0CW7pPCVKPGdX2UKGgGR0BiBkCHRCyAaAdN6ANoCEdAlu86PwNLDnV9lChoBkdAcXSGJvYOD2gHS/VoCEdAlvElX/5tWXV9lChoBkdAcWd238XN1WgHS/doCEdAlvGPdhy8z3V9lChoBkdAc0vv4/NZ/2gHTQgBaAhHQJbxqqaPS2J1fZQoaAZHQGKL6Ae7tiRoB03oA2gIR0CW8k81XNkfdX2UKGgGR0Bw29A9mpVCaAdL52gIR0CW8nFd9lVcdX2UKGgGR0BxHFYigTRIaAdL4GgIR0CW8r2v0RODdX2UKGgGR0Bwfj4UN8VpaAdLrGgIR0CW8/t4zJp4dX2UKGgGR0BkPUxASnLraAdN6ANoCEdAlvQlbRneznV9lChoBkdAcpwQzk6tDGgHS85oCEdAlvRclLOAy3V9lChoBkdAcpUgccU/OmgHS6poCEdAlvSF90A93nV9lChoBkdAcAgJP69CeGgHS7poCEdAlvV9MK1G9nV9lChoBkdAcLWHryDqW2gHS8BoCEdAlvdGUjcEeXV9lChoBkdAb8enDziCKGgHS7hoCEdAlvd4Qz1scnV9lChoBkdAcRo6NVBD5WgHS8doCEdAlvfpaV2RrHV9lChoBkdAcVzKEnLJS2gHS8VoCEdAlvlNdeIEbHV9lChoBkdAcSCUD+zdDmgHS85oCEdAlvlNyDIzWXV9lChoBkdAcCdaxX4j8mgHS7VoCEdAlvpjM7lq8HV9lChoBkdAcDLknTiKi2gHS7JoCEdAlvp7S7Xg+HV9lChoBkdAcCkqhlDneWgHS7ZoCEdAlvtC1iONpHV9lChoBkdAb5GVCXyAhGgHS75oCEdAlvtaA4GUwHV9lChoBkdAcZxqwyIpIGgHS6VoCEdAlvvs9Oh0yXV9lChoBkdAZgtxKg7HQ2gHTegDaAhHQJb8InSfDk51fZQoaAZHQGRqh1LamGdoB03oA2gIR0CW/cJnxri3dX2UKGgGR0BjtIcxTKkmaAdN6ANoCEdAlv//CMxXXHV9lChoBkdAcc337k4m1WgHS8doCEdAlwAK94/u9nV9lChoBkdAcBxhlDneSGgHS6NoCEdAlwFM3ZPEbnV9lChoBkdAcA/KHwgDBGgHS6NoCEdAlwFjTnaFmHV9lChoBkdAcEf8mrsByWgHS85oCEdAlwIGITGo73V9lChoBkdAcdqu6VdHD2gHS/RoCEdAlwJM0gr6L3V9lChoBkdAcfG3/xUedWgHS9loCEdAlwJ/XsgMdHV9lChoBkdAbq0rFwT/Q2gHS6toCEdAlwL7QgLZz3V9lChoBkdAcVBSFXaJymgHS7poCEdAlwMIu9OARXV9lChoBkdAcbB4H5aePWgHS69oCEdAlwNOlKsdUHV9lChoBkdAbFulEZzgdmgHS/loCEdAlwVShnJ1aHV9lChoBkdAYpwe/5+H8GgHTegDaAhHQJcF1zBAOax1fZQoaAZHQHAaDqnm7rdoB0vaaAhHQJcGGj4593N1fZQoaAZHQG/6JPIn0CloB0uwaAhHQJcHNDUmUnp1fZQoaAZHQG7LsoMKCxxoB0utaAhHQJcH2Z8a4tp1fZQoaAZHQG/Hw6ZH/cZoB0vHaAhHQJcH7Ai3XqZ1fZQoaAZHQHH+DOLR8dBoB00PAWgIR0CXCQzJ6po9dX2UKGgGR0Bw3ZjSXt0FaAdLzWgIR0CXCU9jwx33dX2UKGgGR0BxVFUwSJ0oaAdL8WgIR0CXCayhSLqEdX2UKGgGR0BxSELYwqRVaAdL4WgIR0CXCiyprDZUdX2UKGgGR0BwbcWHk92YaAdLvGgIR0CXCqOSntOVdX2UKGgGR0Bwar1xsEaEaAdLsmgIR0CXC055qubJdX2UKGgGR0ByC/2saKk3aAdL22gIR0CXDD1AZ88cdX2UKGgGR0BxsX0Gu9vkaAdLyWgIR0CXDWQuEmICdX2UKGgGR0BjfDeANG3GaAdN6ANoCEdAlw2eYc/+sHV9lChoBkdAcTuVi4J/omgHS9hoCEdAlw6c89wFT3V9lChoBkdAcKSyoGY8dWgHS5RoCEdAlw72Q0XP7nV9lChoBkdAbXDCCSRr8GgHTd0BaAhHQJcPnibUgB91fZQoaAZHQHDKIi1RceNoB0vVaAhHQJcP3+GXXy11fZQoaAZHQHMsUJOWSlpoB00SAWgIR0CXEJM4cWCVdX2UKGgGR0BwNvR/mT1TaAdLtmgIR0CXEk0163RYdX2UKGgGR0BxhMr4FiazaAdNHwFoCEdAlxKtU83dbnV9lChoBkdAcWwkDIRywWgHS+NoCEdAlxLQb+98JHV9lChoBkdAclcLApKBd2gHTS8BaAhHQJcUwBS1map1fZQoaAZHQGKunmJWNm1oB03oA2gIR0CXFQC1qnFYdX2UKGgGR0ByLGEf1YhdaAdLwGgIR0CXFSTwlSjydX2UKGgGR0BxolLXcxj8aAdLtWgIR0CXFcaNuLrHdX2UKGgGR0BwSGF9KEnLaAdLrWgIR0CXFcYAKfFrdX2UKGgGR0ByRSxD9fkWaAdNAgFoCEdAlxZIuCf6GnV9lChoBkdAcWFcPe54GGgHTQsBaAhHQJcWW19fCyh1fZQoaAZHQHAtUYfnwG5oB0uZaAhHQJcXcyYXwb51fZQoaAZHQHB+MJx//edoB0vUaAhHQJcXyWBz3h51fZQoaAZHQHKQAJb+tKZoB00WAWgIR0CXGFCZWq95dX2UKGgGR0ByJxTNt65YaAdLq2gIR0CXGIjLSuyNdX2UKGgGR0BwxaHWSU1RaAdLkmgIR0CXGY/UvwmWdX2UKGgGR0BxzlAVwgkkaAdL1WgIR0CXGcH4oJAudX2UKGgGR0Bm0id4FA3UaAdN6ANoCEdAlxpC/9Hc13V9lChoBkdAchWJ1q33H2gHS5JoCEdAlxqD81n/UHV9lChoBkdAcLr4J/oaDWgHS51oCEdAlxrYMz/IbXV9lChoBkdAcPDgvlEJB2gHS5VoCEdAlxsW3z+WGHV9lChoBkdAcAcNZeRgZ2gHS8hoCEdAlxt9X1anrXV9lChoBkdAcFgIE8q4IGgHS7FoCEdAlx0c2m51/3V9lChoBkdAcwZtga3qiWgHS+hoCEdAlx3aoZQ53nV9lChoBkdAbebpwCKaX2gHS75oCEdAlx3lb7j1f3V9lChoBkdAcEtlkYoAn2gHS9JoCEdAlx9+Mhouf3V9lChoBkdAceCThYNiIGgHTUYBaAhHQJcf9oIv8Il1fZQoaAZHQHD1O2y9mHxoB0unaAhHQJcgLGtITXd1fZQoaAZHQHDT7bHp8nhoB0vLaAhHQJcglcmjTKF1fZQoaAZHQHGm5Y5ksjFoB00AAWgIR0CXINydWhh6dX2UKGgGR0BwzpwEQoTgaAdLtWgIR0CXIaldTo+wdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c6f5fcc56f9abb947d1f776636661220ba5bbdc22ffdfb40ea8b39be1540a29
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0476a2849061bf0ba718ee6a3c5a0dbd331ec43fd5f848d95bb537df5d62e1fc
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (147 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 235.34822691789668, "std_reward": 73.70881290267948, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-19T12:08:18.282022"}