distilbert-imdb / README.md
JeffreyJIANG's picture
Model save
cb7bd3e verified
|
raw
history blame
2.13 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - imdb
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilbert-imdb
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: imdb
          type: imdb
          config: plain_text
          split: test[6250:12500]+test[-12500:-6250]
          args: plain_text
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.93024
          - name: F1
            type: f1
            value: 0.9302304818748904
          - name: Precision
            type: precision
            value: 0.93047490567909
          - name: Recall
            type: recall
            value: 0.93024

distilbert-imdb

This model is a fine-tuned version of distilbert-base-uncased on the imdb dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2118
  • Accuracy: 0.9302
  • F1: 0.9302
  • Precision: 0.9305
  • Recall: 0.9302

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 9072
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2803 1.0 782 0.1874 0.9276 0.9276 0.9276 0.9276
0.1143 2.0 1564 0.2118 0.9302 0.9302 0.9305 0.9302

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2