|
--- |
|
license: cc0-1.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- Open-Orca/SlimOrca |
|
base_model: 152334H/miqu-1-70b-sf |
|
model-index: |
|
- name: Senku-70B-Full |
|
results: [] |
|
--- |
|
|
|
# ShinojiResearch/Senku-70B-Full |
|
|
|
[<img src="https://cdna.artstation.com/p/assets/images/images/034/109/324/large/bella-factor-senku-ishigami.jpg?1611427638" width="420">](Senku-70B-Full) |
|
## UPDATE: **85.09** EQ-Bench with ChatML teamplate |
|
* EQ-Bench: (Mistral) *84.89* -> **85.09** (ChatML) |
|
* GSM8k: (Mistral) *77.18* -> **71.04** (ChatML) |
|
* Hellaswag: (Mistral) 87.67 -> ?? |
|
|
|
Finetune of miqu-70b-sf dequant of miqudev's leak of Mistral-70B (allegedly an early mistral medium). My diffs are available under CC-0 (That is the Senku-70B repo, full includes the merge), this is a merge with the leaked model, you can use the other repository to save bandwidth. |
|
|
|
**Update**: Upon further testing a score of **85.09** was achieved using ChatML instead of Mistral's prompt. |
|
|
|
## Prompt Template |
|
|
|
I recommend using the ChatML format instead, I will run more benchmarks. This also fixes the bug with Miqu dequant failing to provide a stop. |
|
``` |
|
<|im_start|>system |
|
Provide some context and/or instructions to the model. |
|
<|im_end|> |
|
<|im_start|>user |
|
The user’s message goes here |
|
<|im_end|> |
|
<|im_start|>assistant <|im_end|> |
|
``` |
|
|
|
## Kudos |
|
`Credit to https://twitter.com/hu_yifei for providing GSM & Hellaswag. It is the first open weight model to dethrone GPT-4 on EQ bench.` |
|
|
|
## Base Model Details |
|
This model is a fine-tuned version of [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) on the Slimorca dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3110 |
|
|
|
## Training procedure |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: 152334H/miqu-1-70b-sf |
|
model_type: MistralForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
is_mistral_derived_model: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
datasets: |
|
- path: Open-Orca/SlimOrca |
|
type: sharegpt |
|
conversation: chatml |
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.1 |
|
output_dir: ./qlora-out |
|
|
|
adapter: qlora |
|
lora_model_dir: |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
lora_target_modules: |
|
- gate_proj |
|
- down_proj |
|
- up_proj |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
|
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 |
|
num_epochs: 1 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
loss_watchdog_threshold: 5.0 |
|
loss_watchdog_patience: 3 |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_table_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
``` |
|
|
|
</details><br> |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.9043 | 0.0 | 1 | 0.6387 | |
|
| 0.5612 | 0.25 | 881 | 0.3279 | |
|
| 0.6044 | 0.5 | 1762 | 0.3177 | |
|
| 0.6592 | 0.75 | 2643 | 0.3110 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.8.2 |
|
- Transformers 4.38.0.dev0 |
|
- Pytorch 2.1.2+cu118 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ShinojiResearch__Senku-70B-Full) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |75.44| |
|
|AI2 Reasoning Challenge (25-Shot)|71.50| |
|
|HellaSwag (10-Shot) |87.88| |
|
|MMLU (5-Shot) |75.20| |
|
|TruthfulQA (0-shot) |61.96| |
|
|Winogrande (5-shot) |84.77| |
|
|GSM8k (5-shot) |71.34| |
|
|
|
|