Benchmark-v0 / data_process /amazon_text_emb.py
Junyin's picture
Add files using upload-large-folder tool
05744dc verified
import argparse
import collections
import gzip
import html
import json
import os
import random
import re
import torch
from tqdm import tqdm
import numpy as np
from utils import *
from transformers import LlamaForCausalLM, LlamaTokenizer, LlamaConfig, AutoTokenizer, AutoModel
def load_data(args):
item2feature_path = args.data_path
item2feature = load_json(item2feature_path)
return item2feature
def generate_text(item2feature, features):
item_text_list = []
for item in item2feature:
data = item2feature[item]
text = []
for meta_key in features:
if meta_key in data:
meta_value = clean_text(data[meta_key])
text.append(meta_value.strip())
item_text_list.append([int(item), text])
return item_text_list
def preprocess_text(args):
print('Process text data ...')
# print('Dataset: ', args.dataset)
item2feature = load_data(args)
# load item text and clean
item_text_list = generate_text(item2feature, ['title'])
# item_text_list = generate_text(item2feature, ['title'])
# return: list of (item_ID, cleaned_item_text)
return item_text_list
def generate_item_embedding(args, item_text_list, tokenizer, model, word_drop_ratio=-1, save_path = ''):
print('Generate text embedding ...')
# print(' Dataset: ', args.dataset)
items, texts = zip(*item_text_list)
order_texts = [[0]] * len(items)
for item, text in zip(items, texts):
order_texts[item] = text
for text in order_texts:
assert text != [0]
embeddings = []
emb_result = []
start, batch_size = 0, 1
with torch.no_grad():
while start < len(order_texts):
if (start+1)%100==0:
print("==>",start+1)
field_texts = order_texts[start: start + batch_size]
# print(field_texts)
field_texts = zip(*field_texts)
field_embeddings = []
for sentences in field_texts:
sentences = list(sentences)
# print(sentences)
if word_drop_ratio > 0:
print(f'Word drop with p={word_drop_ratio}')
new_sentences = []
for sent in sentences:
new_sent = []
sent = sent.split(' ')
for wd in sent:
rd = random.random()
if rd > word_drop_ratio:
new_sent.append(wd)
new_sent = ' '.join(new_sent)
new_sentences.append(new_sent)
sentences = new_sentences
encoded_sentences = tokenizer(sentences, max_length=args.max_sent_len,
truncation=True, return_tensors='pt',padding="longest").to(args.device)
outputs = model(input_ids=encoded_sentences.input_ids,
attention_mask=encoded_sentences.attention_mask)
masked_output = outputs.last_hidden_state * encoded_sentences['attention_mask'].unsqueeze(-1)
mean_output = masked_output.sum(dim=1) / encoded_sentences['attention_mask'].sum(dim=-1, keepdim=True)
mean_output = mean_output.detach().cpu()
emb_result.append(mean_output.numpy().tolist())
field_embeddings.append(mean_output)
field_mean_embedding = torch.stack(field_embeddings, dim=0).mean(dim=0)
embeddings.append(field_mean_embedding)
start += batch_size
embeddings = torch.cat(embeddings, dim=0).numpy()
print('Embeddings shape: ', embeddings.shape)
all_results = {
'text':[],
'node_type':[],
'emb':[]
}
all_results['text'] = [t[0] for t in texts]
all_results['node_type'] = [1] * len(all_results['text'])
for emb in emb_result:
str_emb = ''
for x in emb:
str_emb = str_emb + str(x) + ' '
all_results['emb'].append(str_emb[:-1])
import pandas as pd
df = pd.DataFrame(all_results)
# header = 0: w/o column name; index = False: w/o index column
df.to_csv(args.save_path, sep = '\t', header = 0, index = False)
# file = os.path.join(args.root, args.dataset + '.emb-' + args.plm_name + "-td" + ".npy")
# np.save(file, embeddings)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='Arts', help='Instruments / Arts / Games')
parser.add_argument('--root', type=str, default="")
parser.add_argument('--gpu_id', type=int, default=0, help='ID of running GPU')
parser.add_argument('--plm_name', type=str, default='llama')
parser.add_argument('--plm_checkpoint', type=str,
default='')
parser.add_argument('--max_sent_len', type=int, default=2048)
parser.add_argument('--word_drop_ratio', type=float, default=-1, help='word drop ratio, do not drop by default')
parser.add_argument('--data_path', type=str, default='')
parser.add_argument('--save_path', type=str, default='')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
args.root = os.path.join(args.root, args.dataset)
device = set_device(args.gpu_id)
args.device = device
item_text_list = preprocess_text(args)
plm_tokenizer, plm_model = load_plm(args.plm_checkpoint)
if plm_tokenizer.pad_token_id is None:
plm_tokenizer.pad_token_id = 0
plm_model = plm_model.to(device)
generate_item_embedding(args, item_text_list, plm_tokenizer,
plm_model, word_drop_ratio = args.word_drop_ratio,
save_path = args.save_path)